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            Abstract
The mechanistic target of rapamycin (mTOR) has a key role in the integration of various physiological stimuli to regulate several cell growth and metabolic pathways1. mTOR primarily functions as a catalytic subunit in two structurally related but functionally distinct multi-component kinase complexes, mTOR complex 1 (mTORC1) and mTORC2 (refs 1, 2). Dysregulation of mTOR signalling is associated with a variety of human diseases, including metabolic disorders and cancer1. Thus, both mTORC1 and mTORC2 kinase activity is tightly controlled in cells. mTORC1 is activated by both nutrients3,4,5,6 and growth factors7, whereas mTORC2 responds primarily to extracellular cues such as growth-factor-triggered activation of PI3K signalling8,9,10. Although both mTOR and GÎ²L (also known as MLST8) assemble into mTORC1 and mTORC2 (refs 11, 12, 13, 14, 15), it remains largely unclear what drives the dynamic assembly of these two functionally distinct complexes. Here we show, in humans and mice, that the K63-linked polyubiquitination status of GÎ²L dictates the homeostasis of mTORC2 formation and activation. Mechanistically, the TRAF2 E3 ubiquitin ligase promotes K63-linked polyubiquitination of GÎ²L, which disrupts its interaction with the unique mTORC2 component SIN1 (refs 12, 13, 14) to favour mTORC1 formation. By contrast, the OTUD7B deubiquitinase removes polyubiquitin chains from GÎ²L to promote GÎ²L interaction with SIN1, facilitating mTORC2 formation in response to various growth signals. Moreover, loss of critical ubiquitination residues in GÎ²L, by either K305R/K313R mutations or a melanoma-associated GÎ²L(Î”W297) truncation, leads to elevated mTORC2 formation, which facilitates tumorigenesis, in part by activating AKT oncogenic signalling. In support of a physiologically pivotal role for OTUD7B in the activation of mTORC2/AKT signalling, genetic deletion of Otud7b in mice suppresses Akt activation and Kras-driven lung tumorigenesis in vivo. Collectively, our study reveals a GÎ²L-ubiquitination-dependent switch that fine-tunes the dynamic organization and activation of the mTORC2 kinase under both physiological and pathological conditions.
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                    Figure 1: TRAF2 promotes K63-linked polyubiquitination of GÎ²L.[image: ]


Figure 2: Ubiquitination of GÎ²L on K305 and K313 by TRAF2 governs the homeostasis of mTORC2 kinase.[image: ]


Figure 3: Deficiency in GÎ²L ubiquitination elevates mTORC2 activity to confer oncogenicity.[image: ]


Figure 4: Growth factor signalling triggers OTUD7B-mediated GÎ²L deubiquitination to promote mTORC2 integrity, favouring tumorigenesis.[image: ]
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Extended data figures and tables

Extended Data Figure 1 The polyubiquitination status of GÎ²L and mTORC2 kinase formation is regulated by upstream physiological stimuli.
a-c, The polyubiquitination status of GÎ²L is reduced in response to growth factor stimulation. Immunoblot (IB) analysis of whole-cell lysates (WCL) or Ni-NTA pull-down products under denaturing conditions derived from HEK293 cells transfected with Hisâ€“Ub together with (a, c) or without (b) HAâ€“GÎ²L vector. Cells were serum starved for 16 h and treated with insulin (100â€‰nM) or Dulbeccoâ€™s phosphate-buffered saline (DPBS) for 30â€‰min (a, c), or EGF (100â€‰ng mlâˆ’1) for 16â€‰min (b) before harvesting. d, e, Unlike GÎ²L, polyubiquitination of RPTOR is minimally affected by growth signalling induction. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from HEK293 cells transfected with HAâ€“RPTOR and Hisâ€“Ub constructs. Thirty-two hours post-transfection, cells were subjected to serum starvation for 16â€‰h, and then exposed to insulin (100â€‰nM) (d) or EGF (100â€‰ng mlâˆ’1) (e) at indicated time points before harvesting. f, Quantification results from three independent experiments showing fold differences of endogenous GÎ²L binding to SIN1, RICTOR and Rptor in cells in response to insulin stimulation, as indicted in Fig. 1c. Data are meanâ€‰Â±â€‰s.d. The intensity of each blot generated using ImageJ software were analysed by two-tailed paired Studentâ€™s t-test, *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01. g, The assembly of endogenous mTORC1 and mTORC2 responds to physiological growth factor stimulation. IB analysis of GÎ²L immunoprecipitate or WCL derived from HEK293 cells serum starved for 16â€‰h, then stimulated with EGF (100â€‰ng mlâˆ’1), and lysed at indicated time points using CHAPS buffer for immunoprecipitation and IB analysis. Rabbit IgG antibody was used as negative control for GÎ²L immunoprecipitation. For quantification analysis, levels were arbitrarily set at 1.0 at the 0â€‰min time point. hâ€“j, Growth factor stimulation enhances mTORC2, but inhibits mTORC1 formation at early time points. IB analysis of HA immunoprecipitate or WCL derived from HEK293 cells transfected with HAâ€“mTOR (h), HAâ€“RPTOR (i), or HAâ€“RICTOR (j) constructs. Thirty-two hours post-transfection, cells were serum starved for 16â€‰h, then stimulated with insulin (100â€‰nM), and lysed at indicated time points using CHAPS buffer for immunoprecipitation and IB analysis. k, Polyubiquitination of GÎ²L inversely correlates with mTORC2 integrity and activity in response to EGF stimulation. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from HEK293 cells transfected with HAâ€“GÎ²L and Hisâ€“Ub constructs. Thirty-two hours post-transfection, cells were subjected to serum starvation for 16â€‰h, then treated with EGF (100â€‰ng mlâˆ’1) for indicated time points, lysed for HA immunoprecipitation or His pull-down assays and IB analysis. l, Transient insulin stimulation increases the relative abundance of endogenous mTORC2, but reduces mTORC1 formation in cells. HEK293 cells were subjected to serum starvation for 16â€‰h and treated with or without insulin (100â€‰nM) for 15â€‰min, and lysed using CHAPS buffer. WCL was filtered and run through an FPLC Superdex 200 column. Five hundred microlitres of elute was collected for each fraction and a 1/20 volume of each fraction was resolved on SDSâ€“PAGE and subjected to IB analysis. m, GÎ²L polyubiquitination linkage was examined by transfecting His-tagged wild-type (WT) and indicated KR ubiquitin mutants together with HAâ€“GÎ²L into HEK293 cells, followed by IB analysis of Ni-NTA pull-down products and WCL. n, Polyubiquitination of GÎ²L could largely be detected in cells transfected with wild-type ubiquitin and lysine-63-only ubiquitin (K63 only), but not lysine-48-only ubiquitin mutant (K48 only) constructs. IB analysis of Ni-NTA pull-down products and WCL derived from HEK293 cells transfected with HAâ€“GÎ²L and wild-type Hisâ€“Ub or mutant constructs as indicated. For uncropped gels, see Supplementary Fig. 1.


Extended Data Figure 2 The TRAF2 E3 ligase catalyses K63-linked polyubiquitination of GÎ²L and inhibits the activity of mTORC2 kinase in cells.
aâ€“c, GÎ²L specifically interacts with TRAF2 in cells. IB analysis of immunoprecipitate and WCL derived from HEK293 cells transfected with indicated constructs. d, e, Polyubiquitination of GÎ²L in HEK293 cells was examined by transfecting GÎ²L, various indicated E3 ligases and Hisâ€“Ub constructs, followed by IB analysis of WCL and Ni-NTA pull-down products under denaturing conditions. f, TRAF2, but not TRAF6, promotes polyubiquitination of endogenous GÎ²L in cells. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from HEK293 cells transfected indicated constructs. g, h, Genetic deletion of Traf2 attenuates polyubiquitination of GÎ²L in cells. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from Traf2+/+ and Traf2âˆ’/âˆ’ MEFs that were transfected with (g) or without (f) HAâ€“GÎ²L, along with Hisâ€“Ub vector. i, TRAF2 promotes polyubiquitination of GÎ²L in an E3 ligase activity-dependent manner. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from Traf2âˆ’/âˆ’ MEFs transfected with HAâ€“GÎ²L and Hisâ€“Ub, along with wild-type or the activity-deficient TRAF2 (Î”RING) mutant construct. j, TRAF2 promotes K63-linked polyubiquitination of GÎ²L in cells. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from HEK293 cells transfected with HAâ€“GÎ²L and Hisâ€“Ub construct, or His-tagged ubiquitin mutants containing only lysine 63 (K63 only) or no lysine residue (K0). k, Genetic deletion of Traf2 does not affect the half-life of endogenous GÎ²L protein in cells. IB analysis of WCL derived from Traf2+/+ and Traf2âˆ’/âˆ’ MEFs treated with 100â€‰Î¼g mlâˆ’1 cycloheximide (CHX) for indicated time points before harvesting. l, A schematic diagram showing the evolutionarily conserved consensus TRAF2-binding motif within GÎ²L. m, Mutating the TRAF2 consensus motif abolishes GÎ²L binding to TRAF2 in cells. IB analysis of WCL and immunoprecipitate from HEK293 cells transfected with TRAF2, together with GÎ²L or GÎ²L(PEAA) constructs. n, Mutating the TRAF2 consensus motif largely abolishes GÎ²L polyubiquitination in cells. Polyubiquitination status of GÎ²L in HEK293 cells was examined by transfecting HA-tagged GÎ²L or GÎ²L(PEAA) with Hisâ€“Ub constructs, followed by IB analysis of WCL and Ni-NTA pull-down products under denaturing conditions. o, Genetic deletion of Traf2 attenuates polyubiquitination of GÎ²L in cells. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from Traf2+/+ and Traf2âˆ’/âˆ’ MEFs transfected with HAâ€“GÎ²L and Hisâ€“Ub. Thirty-two hours post-transfection, cells were subjected to serum starvation for 16â€‰h and exposed to EGF (100â€‰ng mlâˆ’1) for indicated time points before harvesting. p, Loss of Traf2 leads to elevated Akt phosphorylation in response to EGF. IB analysis of WCL derived from Traf2+/+ and Traf2âˆ’/âˆ’ MEFs that were subjected to serum starvation for 16â€‰h and treated with EGF (100â€‰ng mlâˆ’1) for indicated time points before harvesting. For quantification analysis, levels are normalized to total Akt or S6k1, respectively, and arbitrarily set at 1.0 at the 8â€‰min time point of Traf2+/+ MEFs. q, TRAF2 inhibits Akt(pSer473) in an E3 ligase activity-dependent manner. IB analysis of WCL derived from Traf2âˆ’/âˆ’ MEFs transfected with Flag-tagged wild-type TRAF2 or the activity-deficient TRAF2(Î”RING) constructs. r, Genetic deletion of Traf2 minimally affects Akt ubiquitination in cells. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from Traf2+/+ and Traf2âˆ’/âˆ’ MEFs transfected with HAâ€“Akt1 and Hisâ€“Ub. s, Inhibition of mTOR kinase activity does not significantly affect polyubiquitination of GÎ²L in cells. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from Traf2âˆ’/âˆ’ MEFs transfected with HAâ€“GÎ²L and Hisâ€“Ub constructs. Thirty-two hours post-transfection, cells were treated with or without Torin-1 (50â€‰nM) for 6â€‰h before harvesting. t, Activation of TNF receptor signalling does not significantly regulate polyubiquitination of GÎ²L in cells. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from mouse B cell lymphoma cell line A20 cells that were transfected with HAâ€“GÎ²L and Hisâ€“Ub constructs. Thirty-two hours post-transfection, cells were treated with or without TNFÎ± (50â€‰ng mlâˆ’1) for indicated time points before harvesting. For uncropped gels, see Supplementary Fig. 1.


Extended Data Figure 3 TRAF2 promotes polyubiquitination of GÎ²L at the WD7 motif, a specific SIN1-interacting domain, to impair the assembly of mTORC2 kinase.
a, b, GÎ²L utilizes different WD40 motifs to interact with the two distinct mTOR complexes. Specifically, the WD6 motif is the major GÎ²L domain interacting with the unique mTORC1 subunit, RPTOR, while the WD7 motif primarily binds a mTORC2-specific subunit, SIN1 in cells. IB analysis of WCL and GST pull-down products derived from HEK293 cells transfected with HAâ€“RPTOR (a) or HAâ€“SIN1 (b) constructs, together with indicated GSTâ€“GÎ²L mammalian expression vectors. c, A schematic illustration showing specific binding of RPTOR to the WD6 domain of GÎ²L to be incorporated into mTORC1, and binding of SIN1 to the WD7 motif of GÎ²L to promote mTORC2 formation. d, A schematic model showing the experimental procedures of a sequential pull-down assay, which is performed to detect the existence of GÎ²L ubiquitin moieties in either GST-purified mTORC1 or mTORC2. e, Detection of ubiquitinated GÎ²L species in GST-purified mTORC1, but not mTORC2. HEK293 cells were transfected with either GSTâ€“SIN1 or GSTâ€“Rptor expression constructs, together with Hisâ€“GÎ²L and HAâ€“Ub vectors. Forty-eight hours post-transfection, cells were harvested in CHAPS buffer to specifically pull down the intact mTORC1 or mTORC2 from cell lysates with GST-conjugated beads. The GST pull-down products were eluted using glutathione (GSH)-containing buffer and the elutes were subjected to second round of His pull-down assays in denaturing condition. Afterwards, the resulting samples were resolved on SDSâ€“PAGE and subjected to IB analysis to detect the ubiquitination status of mTORC1- and mTORC2-associated GÎ²L, respectively. f, GÎ²L is largely ubiquitinated in GST-purified mTORC1, but not mTORC2. HEK293 cells were transfected with either GSTâ€“SIN1 or GSTâ€“Rptor constructs, together with Hisâ€“Ub vector. Following a similar protocol as described in e, His pull-down products and WCL were subjected to IB analysis of GÎ²L ubiquitin moieties in either mTORC1 or mTORC2. g, Quantification results from three independent experiments showing fold differences of endogenous GÎ²L binding to Sin1, Rictor and Rptor in Traf2+/+ and Traf2âˆ’/âˆ’ MEFs, as indicated in Fig. 2d (meanâ€‰Â±â€‰s.d., *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01, paired Studentâ€™s t-test). h, IB analysis of WCL and HA immunoprecipitate derived from Traf2+/+ and Traf2âˆ’/âˆ’ MEFs transfected with HAâ€“GÎ²L or empty vector (EV) as a negative control. i, Deletion of Traf2 increases the formation of endogenous mTORC2, meanwhile reduces endogenous mTORC1 formation. Traf2+/+ and Traf2âˆ’/âˆ’ MEFs in normal culture medium were lysed using CHAPS buffer. WCL was fractionated through an FPLC Superdex 200 column. Five hundred microlitres of eluate was collected for each fraction and a 1/20 volume of each fraction was resolved on SDSâ€“PAGE for IB analysis. j, TRAF2 promotes GÎ²L interaction with RPTOR, but inhibits GÎ²Lâ€“SIN1 binding in an E3-ligase-activity-dependent manner. IB analysis of WCL and HA immunoprecipitate derived from HEK293 cells transfected with HAâ€“GÎ²L, Mycâ€“RPTOR, Flagâ€“SIN1, together with increasing doses of wild-type TRAF2 or the activity-deficient TRAF2(Î”RING) mutant construct. For uncropped gels, see Supplementary Fig. 1.


Extended Data Figure 4 Deficiency in GÎ²L ubiquitination at K305/K313 of the WD7 domain promotes mTORC2 formation and kinase activity in cells.
a, A schematic diagram showing two evolutionarily conserved lysine residues (K305 and K313) within the WD7 domain of GÎ²L. b, Mass spectrometry analysis to identify K305 as one of the major GÎ²L ubiquitination residues within the WD7 domain of GÎ²L in cells. HEK293 cells were transfected with CMV-GST-GÎ²L and ubiquitin expression constructs. Forty-eight hours post-transfection, cells were lysed using Triton buffer for GST pull down. The GST pull-down products were eluted with GSH-containing buffer and then subjected to mass spectrometry analysis of ubiquitination sites. The recovered GÎ²L peptide and the ubiquitination site (K305) were highlighted in red. c, Mutating key lysine residues within the WD7 domain of GÎ²L abolishes GÎ²L ubiquitination in cells. Polyubiquitination of GÎ²L in HEK293 cells was examined by transfecting the indicated HAâ€“GÎ²L constructs with Hisâ€“Ub, followed by IB analysis of WCL and Ni-NTA pull-down products under denaturing conditions. d, Sequencing of PCR products from genomic DNA demonstrates the introduction of A to G substitution at the codon encoding K305 and K313 of GÎ²L gene in a GÎ²LKRKR knock-in HEK293 cell line generated by CRISPR-mediated gene editing. e, Loss of GÎ²L ubiquitination leads to elevated GÎ²L binding to mTORC2 components, and reduced GÎ²L binding to mTORC1 components in cells. IB analysis of WCL and HA immunoprecipitate derived from HEK293 cells transfected with indicated GÎ²L plasmids. f, GÎ²LKRKR knock-in cells, compared to wild-type cells, display an increased formation of endogenous mTORC2 and a reduced formation of endogenous mTORC1. HEK293 cells harbouring wild-type GÎ²L, or ubiquitination-deficient GÎ²LKRKR were lysed using CHAPS buffer. The WCL was run through an FPLC Superdex 200 column to collect fractionated cell eluates. A 1/20 volume of each fraction was subjected to IB analysis. g, Loss of ubiquitination of endogenous GÎ²L promotes mTORC2 formation in CHAPS and EBC buffer, but not Triton buffer. IB analysis of GÎ²L immunoprecipitate derived from GÎ²LKRKR knock-in or wild-type HEK293 cells lysed using indicated buffers for immunoprecipitation. The resulting samples were resolved on SDSâ€“PAGE for IB analysis. IB result of WCL prepared using Triton buffer were shown as input. h, Mutating the specific TRAF2 binding site in GÎ²L promotes GÎ²L integration into mTORC2, but inhibits its integration into mTORC1. IB analysis of WCL and HA immunoprecipitate derived from HEK293 cells transfected with HAâ€“GÎ²L or the TRAF2-non-interacting GÎ²L(PEAA) mutant construct. i, Loss of ubiquitination of endogenous GÎ²L promotes RICTOR interaction with mTOR to form mTORC2. IB analysis of WCL or Flag immunoprecipitate derived from GÎ²LKRKR knock-in or wild-type HEK293 cells transfected with Flagâ€“RICTOR construct. Forty-eight hours post-transfection, cells were lysed using CHAPS buffer for Flag immunoprecipitation. The resulting samples were resolved on SDSâ€“PAGE for IB analysis. j, TRAF2 promotes polyubiquitination of GÎ²L, but not the GÎ²L(KRKR) mutant, in cells. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from HEK293 cells transfected with Flagâ€“TRAF2 and Hisâ€“Ub, along with HAâ€“GÎ²L, or HAâ€“GÎ²L(KRKR) mutant constructs. k, Compared to ectopic expression of wild-type GÎ²L, reintroducing GÎ²L(KRKR) into GÎ²L-depleted Traf2+/+ cells significantly elevated Akt(pS473). Conversely, in GÎ²L-depleted Traf2âˆ’/âˆ’ cells, reintroducing GÎ²L(KRKR) did not result in any detectable elevation of Akt(pS473). The Traf2âˆ’/âˆ’ MEFs and wild-type MEFs were depleted of endogenous GÎ²L using lentirivus-medicated delivery of short hairpin RNAs (shRNAs) targeting GÎ²L and then reintroduced with GÎ²L and GÎ²L(KRKR) using pBabe-retroviral expression system. The kinase activity of mTORC2/Akt oncogenic signalling in these stable cell lines was analysed by IB analysis of WCL. l, Quantification results for fold differences of GÎ²L binding to Sin1, Rictor and Rptor, or the Akt(pS473) levels, in GÎ²lâˆ’/âˆ’ MEFs stably expressing GÎ²L or the GÎ²L(KRKR) mutant at the indicated time points of insulin stimulation, as indicated in Fig. 2h. Data from three independent experiments were presented as meanâ€‰Â±â€‰s.d. The intensity of each blot generated using ImageJ software were analysed by paired Studentâ€™s t-test, *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01. m, GÎ²L polyubiquitination status dictates the dynamic assembly of mTOR complexes in response to EGF stimulation. As such, deficiency in GÎ²L polyubiquitination results in elevated mTORC2 formation and elevated downstream Akt activation. IB analysis of WCL and HA immunoprecipitate derived from GÎ²lâˆ’/âˆ’ MEFs stably expressing HAâ€“GÎ²L or the ubiquitination-deficient HAâ€“GÎ²L(KRKR) mutant that were generated by retroviral infection, followed by serum starvation for 16â€‰h and exposure to EGF (100â€‰ng mlâˆ’1) before harvesting using CHAPS buffer. For uncropped gels, see Supplementary Fig. 1.


Extended Data Figure 5 A schematic model depicting the neutralized regulatory effect of reduced GÎ²L ubiquitination on the total output of mTORC1 signalling in cells.
a, Consistent with a previous study, deletion of GÎ²l impairs the integrity and kinase activity of mTORC2, but not mTORC1, in mouse embryonic fibroblasts (MEFs) derived from GÎ²l+/+ and GÎ²lâˆ’/âˆ’ embryos. GÎ²l+/+ and GÎ²lâˆ’/âˆ’ MEFs were transfected with HA-mTOR plasmid, with empty vector as a control. Forty-eight hours post-transfection, cells were lysed using CHAPS buffer for HA immunoprecipitation and IB analysis. b, The schematic illustration of a proposed neutralization model to elucidate the possible underlying mechanism that the observed reduction of mTORC1 abundance resulting from a decrease of GÎ²L ubiquitination in either Traf2âˆ’/âˆ’ cells, GÎ²LKRKR-expressing cells, or at early time points of growth factor stimulation, might be compensated by elevated kinase activity per mTORC1, thus leading to neutralized output of mTORC1 signalling in these cells. This compensation effect is largely derived from reduced GÎ²L ubiquitination-induced elevation of mTORC2 kinase formation that will eventually lead to an increase in AKT-mediated phosphorylation of TSC2, a physiological endogenous inhibitor of mTORC1 signalling that functions largely as a GAP for Rheb. Phosphorylation of TSC2 at multiple sites by AKT releases TSC2 inhibitory effects towards mTORC1, which might further lead to an elevated kinase activity per mTORC1 to balance off its reduction in mTORC1 abundance, thereby leading to minimal perturbation on the total output of mTORC1 signalling in these cells. For uncropped gels, see Supplementary Fig. 1.


Extended Data Figure 6 Deficiency in GÎ²L ubiquitination favours cell survival through elevating the oncogenic mTORC2/AKT signalling.
a, The WD7 motif of GÎ²L is critical for activation of mTORC2 in cells. IB analysis of WCL derived from GÎ²L-depleted OVCAR5 cells stably expressing GÎ²L or indicated GÎ²L mutants. b, c, The SIN1-specific-interacting GÎ²L WD7 motif is critical to maintain mTORC2/AKT signalling to promote cellular survival. GÎ²L-depleted OVCAR5 cells stably expressing WT or various deletion mutants were exposed to indicated concentrations of cisplatin (b) and etoposide (c) for 24â€‰h to measure cell viabilities. Data from three independent experiments were presented as meanâ€‰Â±â€‰s.d. and analysed by ANOVA (*Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01) d, e, The WD7 motif of GÎ²L is critical for contact-dependent and -independent growth of OVCAR5 cells. Quantification results of colony growth (d) or anchorage independent growth (e) of GÎ²L-depleted OVCAR5 cells stably expressing GÎ²L or indicated GÎ²L mutants. Data were meanâ€‰Â±â€‰s.d. from three independent repeats (*Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01, ANOVA analysis). f, g, Deficiency in GÎ²L ubiquitination leads to elevated Akt activation in response to insulin stimulation. GÎ²lâˆ’/âˆ’ MEFs stably expressing HAâ€“GÎ²L and the TRAF2 non-interacting HAâ€“GÎ²L(PEAA) mutant (f) or the ubiquitinaiton-deficient HAâ€“GÎ²L(KRKR) mutant (g) were subjected to serum starvation for 16â€‰h, stimulated with insulin (100â€‰nM) for indicated time points before harvesting for IB analysis of WCL. h, i, Loss of ubiquitination at endogenous GÎ²L promotes resistance to DNA damage drugs. Wild-type or GÎ²LKRKR knock-in HEK293 cells were exposed to indicated concentrations of cisplatin (h) and etoposide (i) for 24â€‰h to measure cell viabilities (biological triplicates, meanâ€‰Â±â€‰s.d., *Pâ€‰<â€‰0.05, two-tailed paired Studentâ€™s t-test). j, Representative image of the dissected tumours derived from GÎ²L-depleted OVCAR5 cells stably expressing GÎ²L or GÎ²L(KRKR) mutant (upper panel). The weight of individual tumour was shown in the lower panel (nâ€‰=â€‰5 tumours per group, meanâ€‰Â±â€‰s.d.,*Pâ€‰<â€‰0.05, two-tailed paired Studentâ€™s t-test). k, Loss of GÎ²L ubiquitination leads to elevated AKT activation in the xenograft tumours. IB analysis of WCL derived from dissected xenografts formed by GÎ²L-depleted OVCAR5 cells stably expressing GÎ²L or GÎ²L(KRKR) mutant. l, The specific AKT kinase inhibitor, MK-2206, inhibits AKT activity in GÎ²L-depleted OVCAR5 cells stably expressing GÎ²L(KRKR) cultured in 10% FBS-containing medium. Cells were treated with MK-2206 at indicated concentration for 2â€‰h and lysed for IB analysis. mâ€“p, Knockdown of endogenous AKT1 or AKT2 inhibits the activation of AKT downstream substrates in GÎ²L-depleted OVCAR5 cells stably expressing GÎ²L(KRKR) (m, n) or in GÎ²LKRKR knock-in HEK293 cells (o, p). q, r, Inhibition of AKT activity by MK-2206 (q) or knocking down AKT1 or AKT2 (r) in GÎ²L-depleted OVCAR5 cells stably expressing GÎ²L(KRKR) promotes cell survival. The cells were incubated with indicated concentrations of cisplatin and etoposide for 24â€‰h. The relative cell viabilities were presented as meanâ€‰Â±â€‰s.d. from triple repeats (*Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01, ANOVA analysis). s, Knockdown of AKT1 or AKT2 in GÎ²LKRKR knock-in HEK293 cells sensitizes these cells to DNA-damaging drugs. The cell viabilities from triple repeats were presented as meanâ€‰Â±â€‰s.d. and analysed by ANOVA (*Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01). t, u, AKT activity is critical for contact-dependent and -independent growth of cells expressing the ubiquitination-deficient form of GÎ²L. Quantification of colony growth by GÎ²LKRKR knock-in HEK293 cells (t) or GÎ²L-depleted OVCAR5 cells stably expressing the GÎ²L(KRKR) mutant (u), with or without knocking down AKT1 or AKT2. Data were presented as meanâ€‰Â±â€‰s.d. and analysed by ANOVA (*Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01). v, Knockdown of AKT1 or AKT2 inhibits anchorage-independent growth of GÎ²L-depleted OVCAR5 cells stably expressing GÎ²L(KRKR). Meanâ€‰Â±â€‰s.d. (ANOVA analysis, *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01). For uncroppoed gels, see Supplementary Fig. 1. For tumour data, see Source Data.
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Extended Data Figure 7 Cancer-associated ubiquitination-deficient GÎ²L(Î”W297) truncation mutant promotes tumour growth in part via enhancing mTORC2 formation and activating the oncogenic mTORC2/AKT signalling.
a, Compared to wild-type GÎ²L, the cancer-associated GÎ²L(Î”W297) truncation mutant exhibits significantly reduced levels of GÎ²L ubiquitination in cells. Polyubiquitination of GÎ²L in HEK293 cells was examined by transfecting the indicated HAâ€“GÎ²L constructs with Hisâ€“Ub, followed by IB analysis of WCL and Ni-NTA pull-down products under denaturing conditions. b, Reintroducing the GÎ²L(Î”W297) truncation, compared to GÎ²L, into GÎ²L-depleted A375 cells leads to relatively increased formation of mTORC2 and reduced mTORC1. GÎ²L-depleted A375 cells stably expressing GÎ²L or GÎ²L(Î”W297) were lysed using CHAPS buffer. WCL was filtrated and run through an FPLC Superdex 200 column to collect fractionated cell eluates for subsequent IB analysis. c, Compared to GÎ²L, GÎ²L(Î”W297) is more potent towards activating AKT in cells. IB analysis of WCL derived from GÎ²l+/+ MEFs or GÎ²lâˆ’/âˆ’ MEFs transfected with indicated GÎ²L constructs. d, Cancer-associated GÎ²L(Î”W297) truncation enhances mTORC2 activity towards phosphorylating Akt in response to insulin stimulation. GÎ²lâˆ’/âˆ’ MEFs stably expressing either HAâ€“GÎ²L or the HAâ€“GÎ²L(Î”W297) mutant were serum starved for 16â€‰h, stimulated with insulin (100â€‰nM) for indicated time points, and lysed for IB analysis of WCL. e, Compared to GÎ²L, ectopic expression of the GÎ²L(Î”W297) truncation mutant displays enhanced chemoresistance. GÎ²L-depleted A375 cells stably expressing GÎ²L or GÎ²L(Î”W297) were exposed to indicated concentrations of cisplatin for 24â€‰h. The cell viabilities from triple replicates were presented as meanâ€‰Â±â€‰s.d. (*Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01, two-tailed paired Studentâ€™s t-test). f, Compared to GÎ²L, ectopic expression of the melanoma-associated GÎ²L(Î”W297) truncation is more potent in promoting contact-independent growth of melanoma cells. Representative images of soft agar colony formation by GÎ²L-depleted A375 cells stably expressing GÎ²L or GÎ²L(Î”W297) were shown (triplicate independent experiments, meanâ€‰Â±â€‰s.d., **Pâ€‰<â€‰0.01, two-tailed paired Studentâ€™s t-test). g, Loss of GÎ²L ubiquitination leads to elevated AKT activation in the xenograft tumours. IB analysis of lysates derived from dissected xenografts formed by GÎ²L-depleted A375 cells stably expressing GÎ²L or the GÎ²L(Î”W297) mutant. h, MK-2206 inhibits AKT activity in GÎ²L-depleted A375 cells stably expressing GÎ²L(Î”W297). Cells were treated with an AKT inhibitor MK-2206 at 1 or 3â€‰Î¼M (with DMSO as vehicle control) for 2â€‰h and lysed for IB analysis. i, Knockdown of AKT1 or AKT2 inhibits the activation of AKT downstream substrates in GÎ²L-depleted A375 cells stably expressing GÎ²L(Î”W297). j, k, Inhibition of AKT activity by MK-2206 (j) or knocking down of AKT1 or AKT2 (k) in GÎ²L-depleted A375 cells expressing GÎ²L(Î”W297) confers sensitivity to DNA-damaging drugs. Cells were incubated with cisplatin or etoposide for 24â€‰h. The relative cell viabilities from triple repeat were presented as meanâ€‰Â±â€‰s.d. and analysed by ANOVA (*Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01). l, Knockdown of AKT1 or AKT2 inhibits anchorage-independent growth of GÎ²L(Î”W297)-expressing cells A375 cells (three independent experiments, meanâ€‰Â±â€‰s.d., ANOVA analysis, *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01). m, A proposed model to describe how the melanoma-associated GÎ²L(Î”W297) truncation mutant disrupts the homeostasis of the two mTOR complexes by impairing polyubiquitination of GÎ²L in cells. Under physiological conditions, the balance of mTORC1 and mTORC2 is tightly controlled by polyubiquitination of GÎ²L on the K305/K313 residues of its WD7 motif. In melanoma cells, the GÎ²L(Î”W297) mutation leads to loss of critical lysine residues for ubiquitination, thus enhancing GÎ²L interaction with SIN1 to promote mTORC2 formation. This subsequently activates the oncogenic AKT signalling to facilitate tumorigenesis. For uncropped gels, see Supplementary Fig. 1.


Extended Data Figure 8 OTUD7B deubiquitinates GÎ²L to promote mTORC2 integrity and signalling activity.
a, Identification of OTUD7B as a specific GÎ²L-interacting deubiquitinase (DUB). IB analysis of WCL and Flag immunoprecipitate derived from HEK293 cells transfected with HAâ€“GÎ²L and Flag-tagged OTU family members of DUBs. b, OTUD7B promotes deubiquitination of GÎ²L in cells in an enzymatic activity-dependent manner. The polyubiquitination status of GÎ²L in HEK293 cells was examined by transfecting HAâ€“GÎ²L and Hisâ€“Ub with Flagâ€“OTUD7B or activity-deficient OTUD7B(C194A), followed by IB analysis of WCL and Ni-NTA pull-down products under denaturing conditions. c, Knockdown of OTUD7B enhances polyubiquitination of endogenous GÎ²L in cells. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from control or OTUD7B-depleted HEK293 cells transfected with Hisâ€“Ub construct. d, K63-linked polyubiquitination of GÎ²L is reduced by ectopic expression of OTUD7B in cells. OTUD7B-depleted HEK293 cells were transfected with CMV-GST-GÎ²L and ubiquitin expression constructs, with or without the Flagâ€“OTUD7B vector. Forty-eight hours post-transfection, cells were lysed using Triton buffer for GST pull-down to elute GSTâ€“GÎ²L protein for UB-AQUA-MS analysis of ubiquitin chain linkage in total diGly-purified GÎ²L protein (triplicates, meanâ€‰Â±â€‰s.d., **Pâ€‰<â€‰0.01, two-tailed paired Studentâ€™s t-test). e, Depletion of Otud7b minimally affects K48-linked polyubiquitination of endogenous GÎ²L. IB analysis of WCL or GÎ²L immunoprecipitate products derived from Otud7b+/+ and Otud7bâˆ’/âˆ’ MEFs transfected with HAâ€“Ub construct. Forty-eight hours post-transfection, the cells were lysed using Triton buffer for GÎ²L immunoprecipitation, with rabbit IgG antibody as negative control. f, Depletion of Otud7b minimally affects the half-life of endogenous GÎ²L protein in cells. IB analysis of WCL derived from Otud7b+/+ and Otud7bâˆ’/âˆ’ MEFs exposed to cycloheximide (CHX, 100â€‰Î¼g mlâˆ’1) at indicated time points before harvesting. g, UCH-L1 specifically interacts with RPTOR, but not GÎ²L, in cells. IB analysis of WCL and HA immunoprecipitate derived from HEK293 cells transfected with the GST-UCH-L1 mammalian expression vector, together with HAâ€“RPTOR or HAâ€“GÎ²L plasmids. Cells were lysed using EBC buffer for HA immunoprecipitation procedures. h, UCH-L1 deubiquitinates RPTOR, but not GÎ²L, in cells. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from HEK293 cells transfected with GST-UCH-L1 and Hisâ€“Ub constructs, together with HAâ€“RPTOR or HAâ€“GÎ²L plasmids as indicated. i, OTUD7B specifically interacts with GÎ²L, but not RPTOR, in cells. IB analysis of WCL and HA immunoprecipitate derived from HEK293 cells transfected with Flagâ€“OTUD7B, together with HAâ€“RPTOR or HAâ€“GÎ²L constructs where indicated. The cells were lysed using EBC buffer for immunoprecipitation procedures. j, OTUD7B reduces polyubiquitination of GÎ²L, but not RPTOR, in cells. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from HEK293 cells transfected with Flagâ€“OTUD7B and Hisâ€“Ub constructs, along with HAâ€“RPTOR or HAâ€“GÎ²L plasmids as indicated. k, Quantification results from three independent experiments showing fold differences of endogenous GÎ²L binding to Sin1, Rictor and Rptor in Otud7b+/+ and Otud7bâˆ’/âˆ’ MEFs, as indicated in Fig. 4c. Data are meanâ€‰Â±â€‰s.d. The intensity of each blot generated using ImageJ software was analysed by paired Studentâ€™s t-test, *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01. l, Deletion of Otud7b reduces formation of endogenous mTORC2, meanwhile increasing the formation of endogenous mTORC1. Otud7b+/+ and Otud7bâˆ’/âˆ’ MEFs in normal culture medium were lysed using CHAPS buffer to preserve mTOR complex integrity. WCL was fractionated through an FPLC Superdex 200 column. Five hundred microlitres of eluate was collected for each fraction for subsequent SDSâ€“PAGE and IB analysis. m, Deletion of Otud7b does not significantly regulate AKT ubiquitination in cells. IB analysis of WCL or Ni-NTA pull-down products under denaturing conditions derived from Otud7b+/+ and Otud7bâˆ’/âˆ’ MEFs transfected with HAâ€“AKT1 and Hisâ€“Ub. n, Deletion of Otud7b leads to constant polyubiquitination of GÎ²L that impairs the dynamic fluctuation in the formation of the two mTOR complexes in response to EGF stimulation. IB analysis of WCL, HA immunoprecipitate or Ni-NTA pull-down products derived from Otud7b+/+ and Otud7bâˆ’/âˆ’ MEFs transfected with HAâ€“GÎ²L and Hisâ€“Ub. Thirty-two hours post-transfection, cells were subjected to serum starvation for 16â€‰h, exposed to EGF (100â€‰ng mlâˆ’1), and lysed at indicated time points using CHAPS buffer for HA immunoprecipitation or under denaturing buffer for Ni-NTA pull-down procedures. o, Quantification results from triple replicates showing fold differences of GÎ²L binding to Sin1, Rictor and Rptor, or the Akt(pS473) levels, in Otud7b+/+and Otud7bâˆ’/âˆ’ MEFs stably expressing GÎ²L at the indicated time points of insulin stimulation, as indicated in Fig. 4e and Extended Data Fig. 8p. Data are meanâ€‰Â±â€‰s.d. The intensity of each blot generated using ImageJ software was analysed by paired Studentâ€™s t-test, *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01. p, q, Loss of Otud7b attenuates mTORC2 kinase activity in response to growth factor stimulation in cells. Otud7b+/+ and Otud7bâˆ’/âˆ’ MEFs were serum starved for 16â€‰h and then treated with insulin (p, 100â€‰nM) or EGF (q, 100â€‰ng mlâˆ’1) for indicated time points, and lysed for IB analysis. r, OTUD7B knockdown inhibits mTORC2 kinase activity in cells. IB analysis of WCL derived from OVCAR5 cells stably expressing independent OTUD7B-targeting shRNAs (with shGFP as a negative control). For quantification, AKT(pS473) levels were normalized to total AKT and arbitrarily set at 1.0 in the blot of shGFP cells. s, OTUD7B knockdown sensitizes cells to DNA-damaging drugs. OVCAR5 cells stably expressing independent OTUD7B-targeting lentiviral shRNAs (with shGFP as a negative control) were exposed to etoposide or cisplatin for 24â€‰h to measure cell viabilities. Data from three independent experiments were shown as meanâ€‰Â±â€‰s.d. and analysed by ANOVA (*Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01). t, u, Knockdown of OTUD7B reduces cell growth and transforming capacity in vitro. Quantification results of colony formation (t) and soft agar colony growth (u) by OVCAR5 cells stably expressing OTUD7B-targeting shRNAs (three independent experiments, meanâ€‰Â±â€‰s.d., *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01, ANOVA analysis). For uncropped gels, see Supplementary Fig. 1.


Extended Data Figure 9 Upon physiological stimulation such as growth factor signalling, there is an induced OTUD7B interaction with GÎ²L to enhance mTORC2 activity and oncogenicity primarily through deubiquitinating GÎ²L.
a, b, Deletion of OTUD7B enhances polyubiquitination of GÎ²L largely in cells stimulated with growth factor signalling. IB analysis of WCL and Ni-NTA pull-down products under denaturing conditions derived from HEK293 cells transfected with Hisâ€“Ub and HAâ€“GÎ²L constructs. Thirty-two hours post-transfection, cells were subjected to serum starvation for 16â€‰h, stimulated with or without EGF (100â€‰ng mlâˆ’1) (a) for 16â€‰min, or insulin (100â€‰nM) or 10% FBS-containing medium (b) for 30â€‰min, and lysed at indicated time points. c, OTUD7B interaction with GÎ²L in cells is induced by growth factor stimulation. IB analysis of WCL and HA immunoprecipitate derived from HEK293 cells transfected with HAâ€“GÎ²L construct. Thirty-two hours post-transfection, cells were serum starved for 16â€‰h, then exposed to insulin (100â€‰nM) or EGF (100â€‰ng mlâˆ’1), and lysed at indicated time points using EBC buffer for the HA immunoprecipitation procedure. d, Endogenous OTUD7B interaction with GÎ²L is triggered by EGF stimulation. IB analysis of GÎ²L immunoprecipitate or WCL derived from HEK293 cells with or without knockdown of endogenous OTUD7B. Cells were serum starved for 16â€‰h, then stimulated with EGF (100â€‰ng mlâˆ’1), and lysed at indicated time points using EBC buffer for immunoprecipitation and IB analysis. See e for quantification results, with levels arbitrarily set to 1.0 at the 0â€‰min time point. e, Quantification results showing fold differences of endogenous GÎ²L binding to OTUD7B in cells at the indicated time points of growth factor stimulation, as indicated in d and Fig. 4f. Data are meanâ€‰Â±â€‰s.d. The intensity of each blot from three independent experiments was measured using ImageJ software and analysed by ANOVA, *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01. f, Unlike OTUD7B, UCH-L1 interaction with RPTOR is not regulated by growth stimulation. IB analysis of WCL, GST pull-down products and HA immunoprecipitate derived from HEK293 cells transfected with HAâ€“RPTOR and the GSTâ€“UCH-L1 mammalian expression constructs. Thirty-two hours post-transfection, cells were serum starved for 16â€‰h, stimulated with insulin (100â€‰nM) and lysed using EBC buffer at indicated time points for the HA immunoprecipitation procedure. For quantification analysis of endogenous GÎ²L binding to other components, levels were arbitrarily set to 1.0 at the 0â€‰min time point. g, OTUD7B displays a reduced binding affinity to ubiquitination-deficient GÎ²L. IB analysis of WCL and HA immunoprecipitate derived from HEK293 cells transfected with wild-type GÎ²L, GÎ²L(KRKR), or TRAF2-non-interacting GÎ²L(PEAA) constructs. h, A schematic illustration showing different domains of the human OTUD7B protein, as well as various OTUD7B mutants used in this study. i, Deletion of the OTUD7B UBA domain impairs OTUD7B interaction with endogenous GÎ²L. IB analysis of WCL and Flag immunoprecipitate derived from HEK293 cells transfected with OTUD7B or indicated OTUD7B mutant constructs. For quantification results of OTUD7B binding to endogenous GÎ²L levels, levels were arbitrarily set to 1.0 in blot of OTUD7B-expressing cells. j, The UBA domain of OTUD7B is critical for its deubiquitinase activity towards GÎ²L in cells. IB analysis of WCL and Ni-NTA pull-down products under denaturing conditions derived from HEK293 cells transfected with Hisâ€“Ub and HAâ€“GÎ²L constructs, together with OTUD7B or indicated OTUD7B mutant constructs. k, Deletion of the OTUD7B UBA domain impairs growth-factor-induced OTUD7B interaction with GÎ²L. IB analysis of WCL and Flag immunoprecipitate derived from HEK293 cells transfected with OTUD7B or indicated OTUD7B mutant constructs. Thirty-two hours post-transfection, cells were serum starved for 16â€‰h, stimulated with insulin (100â€‰nM) and lysed using EBC buffer at indicated time points for the immunoprecipitation procedure. l, Deletion of the OTUD7B UBA domain attenuates growth-factor-induced OTUD7B-mediated de-ubiquitination of GÎ²L. IB analysis of WCL and GÎ²L immunoprecipitate products derived from OTUD7B-depleted HEK293 cells stably expressing OTUD7B or indicated OTUD7B mutants. Cells were transfected with Hisâ€“Ub constructs for 32â€‰h, subjected to serum starvation for 16â€‰h, and then stimulated with or without insulin (100â€‰nM) and lysed using EBC buffer at indicated time points for subsequent IP procedure. m, n, Deletion of the OTUD7B UBA domain attenuates activation of the downstream mTORC2/AKT oncogenic signalling. IB analysis of WCL derived from Otud7bâˆ’/âˆ’ MEFs stably expressing OTUD7B or indicated OTUD7B mutants. The cells were either cultured in 10% FBS-containing culture medium (m), or subjected to serum starvation for 16â€‰h, and then stimulated with or without insulin (n, 100â€‰nM) and lysed using EBC buffer at indicated time points for IB analysis. For quantification, Akt(pS473) levels were normalized to total Akt and arbitrarily set to 1.0 in the first lane. o, OTUD7B promotes deubiquitination of wild-type GÎ²L, but not the GÎ²L(KRKR) mutant, in cells. IB analysis of WCL and Ni-NTA pull-down products under denaturing conditions derived from HEK293 cells transfected with Hisâ€“Ub and HAâ€“GÎ²L or the ubiquitination-deficient HAâ€“GÎ²L(KRKR) mutant constructs, along with or without Flagâ€“OTUD7B as indicated. p, OTUD7B promotes the integration of GÎ²L, but not GÎ²L(KRKR), into mTORC2 in cells. IB analysis of WCL and HA immunoprecipitate derived from HEK293 cells transfected with HAâ€“GÎ²L or the HAâ€“GÎ²L(KRKR) mutant, together with or without Flagâ€“OTUD7B as indicated. Forty-eight hours post-transfection, cells were lysed using CHAPS buffer for the HA immunoprecipitation procedure to maintain mTOR complex integrity. q, OTUD7B regulates AKT activity primarily through modulating the ubiquitination status of GÎ²L. IB analysis of WCL derived from OTUD7B-depleted or control OVCAR5 cells stably expressing GÎ²L or GÎ²L(KRKR). For quantification of AKT(pS473), levels were normalized to total AKT and arbitrarily set to 1.0 in the first lane. r, OTUD7B governs chemoresistance primarily through modulating the ubiquitination status of GÎ²L. shGFP-infected control or OTUD7B-depleted OVCAR5 cells stably expressing GÎ²L or the GÎ²L(KRKR) mutant were exposed to cisplatin or etoposide for 24â€‰h. Data from three independent experiments were presented as meanâ€‰Â±â€‰s.d. and analysed by ANOVA (*Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01). s, t, OTUD7B enhances colony growth and anchorage-independent growth of tumour cells primarily through deubiquitinating GÎ²L in cells. Quantitative data of colony growth in plates (s) and in soft agar (t) by control or OTUD7B-depleted OVCAR5 cells stably expressing GÎ²L or the GÎ²L(KRKR) mutant. Representative images of soft agar colonies are shown in t. The result from triple experiments were presented as meanâ€‰Â±â€‰s.d. and analysed by ANOVA (**Pâ€‰<â€‰0.01). For uncropped gels, see Supplementary Fig. 1.


Extended Data Figure 10 Downstream of various oncogenic mutations, OTUD7B-mediated activation of mTORC2/AKT signalling plays a physiological role in promoting cancer development.
a, b, Knockdown of endogenous OTUD7B suppresses AKT(pS473) levels in several cancer cell lines in which mTORC2/AKT oncogenic signalling was activated by various upstream oncogenic events. IB analysis of WCL derived from HCT116 (a, PTEN deletion), MCF10A (b, PIK3CA EK mutation), H1650 and H2279 (b, EGFR mutation), and A549 and H157 (b, KRAS mutation) cell lines stably expressing independent OTUD7B-targeting lentiviral shRNAs (with shGFP as a negative control). For quantification results of AKT(pS473) levels, levels were normalized to total AKT and arbitrarily set to 1.0 in the blot of shGFP-expressing cells. c, d, Knockdown of endogenous OTUD7B sensitizes cancer cells to chemotherapeutic drugs. HCT116 (c, PTEN deletion), MCF10A (d, PIK3CA EK mutation), H1650 and H2279 (d, EGFR mutation), and A549 and H157 (d, KRAS mutation) cells stably expressing independent OTUD7B-targeting lentiviral shRNAs were exposed to indicated concentrations of cisplatin or etoposide for 24â€‰h. Cell viability data from triple replicates are presented as meanâ€‰Â±â€‰s.d. and were analysed by ANOVA (*Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01). e, TCGA DNA sequencing results showing that the OTUD7B gene is amplified at high frequencies in a variety of human cancers, such as breast, lung and pancreatic cancers. f, Kaplanâ€“Meier analysis showing a tight correlation between OTUD7B expression levels and patient survival. Data were from lung cancer patients with low (nâ€‰=â€‰1,001) and high (nâ€‰=â€‰925) OTUD7B expression (left panel), and lung adenocarcinoma patients with low (nâ€‰=â€‰410) and high (nâ€‰=â€‰310) OTUD7B expression (right panel). Patient number at risk at different times of analyses is indicated at the bottom of the plots. The plots were generated using the KmPlot tool (http://www.kmplot.com/lung). Affymetrix ID 220031_at was used for analyses. g, Lung weight of Otud7b+/+ and Otud7bâˆ’/âˆ’ mice, with (+) or without (âˆ’) KrasLA2 transgene expression, at the indicated ages. Data were presented as mean meanâ€‰Â±â€‰s.e.m. (16 weeks: Otud7b+/+ mice, nâ€‰=â€‰6; Otud7bâˆ’/âˆ’ mice, nâ€‰=â€‰3; 13 weeks: Otud7b+/+KrasLA2 mice, nâ€‰=â€‰5; Otud7bâˆ’/âˆ’KrasLA2 mice, nâ€‰=â€‰5; 16 weeks: Otud7b+/+KrasLA2 mice, nâ€‰=â€‰8; Otud7bâˆ’/âˆ’KrasLA2 mice, nâ€‰=â€‰7; 23 weeks: Otud7b+/+KrasLA2 mice, nâ€‰=â€‰7; Otud7bâˆ’/âˆ’KrasLA2 mice, nâ€‰=â€‰11; **Pâ€‰<â€‰0.01, two-tailed unpaired Studentâ€™s t-test). For uncropped gels, see Supplementary Fig. 1. For tumour data, see Source Data for g.
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