Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polymers with autonomous life-cycle control

Abstract

The lifetime of man-made materials is controlled largely by the wear and tear of everyday use, environmental stress and unexpected damage, which ultimately lead to failure and disposal. Smart materials that mimic the ability of living systems to autonomously protect, report, heal and even regenerate in response to damage could increase the lifetime, safety and sustainability of many manufactured items. There are several approaches to achieving these functions using polymer-based materials, but making them work in highly variable, real-world situations is proving challenging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The life cycle of polymers with autonomous healing functions.
Figure 2: Multiscale strategies for autonomous repair functions in polymeric materials.
Figure 3: Autonomous prevention and communication of material degradation.
Figure 4: Autonomous healing, regeneration and degradation.

Similar content being viewed by others

References

  1. Rebitzer, G. et al. Life cycle assessment: part 1: framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 30, 701–720 (2004).

    CAS  PubMed  Google Scholar 

  2. Hopewell, J., Dvorak, R. & Kosior, E. Plastics recycling: challenges and opportunities. Phil. Trans. R. Soc. B 364, 2115–2126 (2009).

    CAS  PubMed  Google Scholar 

  3. Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012). This paper describes the first physically transient electronics and application in an implantable biomedical device.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. García, S. J., Fischer, H. R. & van der Zwaag, S. A critical appraisal of the potential of self healing polymeric coatings. Prog. Org. Coatings 72, 211–221 (2011).

    Google Scholar 

  5. Selvakumar, N., Jeyasubramanian, K. & Sharmila, R. Smart coating for corrosion protection by adopting nano particles. Prog. Org. Coatings 74, 461–469 (2012).

    CAS  Google Scholar 

  6. Huang, M. & Yang, J. Facile microencapsulation of HDI for self-healing anticorrosion coatings. J. Mater. Chem. 21, 11123–11130 (2011).

    CAS  Google Scholar 

  7. Latnikova, A., Grigoriev, D. O., Hartmann, J., Möhwald, H. & Shchukin, D. G. Polyfunctional active coatings with damage-triggered water-repelling effect. Soft Matter 7, 369–372 (2011).

    ADS  CAS  Google Scholar 

  8. Shchukin, D. & Möhwald, H. A coat of many functions. Science 341, 1458–1459 (2013).

    ADS  CAS  PubMed  Google Scholar 

  9. Shchukin, D. G. Container-based multifunctional self-healing polymer coatings. Polym. Chem. 4, 4871–4877 (2013).

    CAS  Google Scholar 

  10. Esser-Kahn, A. P., Sottos, N. R., White, S. R. & Moore, J. S. Programmable microcapsules from self-immolative polymers. J. Am. Chem. Soc. 132, 10266–10268 (2010).

    CAS  PubMed  Google Scholar 

  11. Borisova, D., Möhwald, H. & Shchukin, D. G. Mesoporous silica nanoparticles for active corrosion protection. ACS Nano 5, 1939–1946 (2011).

    CAS  PubMed  Google Scholar 

  12. Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    ADS  CAS  PubMed  Google Scholar 

  13. Cui, J., Daniel, D., Grinthal, A., Lin, K. & Aizenberg, J. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing. Nature Mater. 14, 790–795 (2015).

    ADS  CAS  Google Scholar 

  14. Esser-Kahn, A. P. et al. Three-dimensional microvascular fiber-reinforced composites. Adv. Mater. 23, 3654–3658 (2011).

    CAS  PubMed  Google Scholar 

  15. Gergely, R. C. R. et al. Multidimensional vascularized polymers using degradable sacrificial templates. Adv. Funct. Mater. 25, 1043–1052 (2015).

    CAS  Google Scholar 

  16. Kousourakis, A., Mouritz, A. P. & Bannister, M. K. Interlaminar properties of polymer laminates containing internal sensor cavities. Compos. Struct. 75, 610–618 (2006).

    Google Scholar 

  17. Coppola, A. M., Thakre, P. R., Sottos, N. R. & White, S. R. Tensile properties and damage evolution in vascular 3D woven glass/epoxy composites. Composites A 59, 9–17 (2014).

    CAS  Google Scholar 

  18. Hartl, D. J., Frank, G. J. & Baur, J. W. Effects of microchannels on the mechanical performance of multifunctional composite laminates with unidirectional laminae. Compos. Struct. 143, 242–254 (2016).

    Google Scholar 

  19. Han, J.-C., Dutta, S. & Ekkad, S. Gas Turbine Heat Transfer and Cooling Technology, 2nd edn (CRC Press, 2012).

    Google Scholar 

  20. Coppola, A. M., Griffin, A. S., Sottos, N. R. & White, S. R. Retention of mechanical performance of polymer matrix composites above the glass transition temperature by vascular cooling. Composites A 78, 412–423 (2015).

    CAS  Google Scholar 

  21. Baginska, M. et al. Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres. Adv. Energy Mater. 2, 583–590 (2012).

    CAS  Google Scholar 

  22. Chen, Z. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy 1, 15009 (2016).

    ADS  CAS  Google Scholar 

  23. Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chem. 5, 1042–1048 (2013).

    ADS  CAS  Google Scholar 

  24. Berkowski, K. L., Potisek, S. L., Hickenboth, C. R. & Moore, J. S. Ultrasound-induced site-specific cleavage of azo-functionalized poly(ethylene glycol). Macromolecules 38, 8975–8978 (2005).

    ADS  CAS  Google Scholar 

  25. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    ADS  CAS  PubMed  Google Scholar 

  26. Ramirez, A. L. B. et al. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nature Chem. 5, 757–761 (2013). This paper describes in situ strengthening of polymers in response to shear forces by mechanically induced covalent crosslinking.

    ADS  CAS  Google Scholar 

  27. Li, J., Nagamani, C. & Moore, J. S. Polymer mechanochemistry: from destructive to productive. Acc. Chem. Res. 48, 2181–2190 (2015).

    CAS  PubMed  Google Scholar 

  28. Simon, Y. C. & Craig, S. L. (eds). Mechanochemistry in Materials (Royal Society of Chemistry, in the press).

  29. Piermattei, A., Karthikeyan, S. & Sijbesma, R. P. Activating catalysts with mechanical force. Nature Chem. 1, 133–137 (2009).

    ADS  CAS  Google Scholar 

  30. Diesendruck, C. E. et al. Proton-coupled mechanochemical transduction: A mechanogenerated acid. J. Am. Chem. Soc. 134, 12446–12449 (2012).

    CAS  PubMed  Google Scholar 

  31. Davis, D. A. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68–72 (2009). This paper describes the first demonstration of a mechanically activated covalent reaction in bulk polymeric materials.

    ADS  CAS  PubMed  Google Scholar 

  32. Gossweiler, G. R. et al. Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett. 3, 216–219 (2014).

    CAS  Google Scholar 

  33. Peterson, G. I., Larsen, M. B., Ganter, M. A., Storti, D. W. & Boydston, A. J. 3D-printed mechanochromic materials. ACS Appl. Mater. Interf. 7, 577–583 (2015).

    CAS  Google Scholar 

  34. Chen, Y. et al. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nature Chem. 4, 559–562 (2012).

    ADS  CAS  Google Scholar 

  35. Löwe, C. & Weder, C. Oligo(p-phenylene vinylene) excimers as molecular probes: Deformation-induced color changes in photoluminescent polymer blends. Adv. Mater. 14, 1625–1629 (2002).

    Google Scholar 

  36. Pang, J. W. C. & Bond, I. P. A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos. Sci. Technol. 65, 1791–1799 (2005). This paper describes damage indication and healing of a fibre-reinforced polymer composite by the incorporation of hollow glass fibres that rupture and release reactive liquids.

    CAS  Google Scholar 

  37. van den Dungen, E. T. A., Loos, B. & Klumperman, B. Use of a profluorophore for visualization of the rupture of capsules in self-healing coatings. Macromol. Rapid Commun. 31, 625–628 (2010).

    CAS  PubMed  Google Scholar 

  38. Lavrenova, A., Farkas, J., Weder, C. & Simon, Y. C. Visualization of polymer deformation using microcapsules filled with charge-transfer complex precursors. ACS Appl. Mater. Interf. 7, 21828–21834 (2015).

    CAS  Google Scholar 

  39. Odom, S. A. et al. Visual indication of mechanical damage using core–shell microcapsules. ACS Appl. Mater. Interf. 3, 4547–4551 (2011).

    CAS  Google Scholar 

  40. Li, W. et al. Autonomous indication of mechanical damage in polymeric coatings. Adv. Mater. 28, 2189–2194 (2016).

    ADS  CAS  PubMed  Google Scholar 

  41. Robb, M. J. et al. A robust damage-reporting strategy for polymeric materials enabled by aggregation-induced emission. ACS Central Sci. 2, 598–603 (2016).

    CAS  Google Scholar 

  42. Gupta, S., Zhang, Q., Emrick, T., Balazs, A. C. & Russell, T. P. Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Mater. 5, 229–233 (2006).

    ADS  Google Scholar 

  43. Blaiszik, B. J. et al. Self-healing polymers and composites. Annu. Rev. Mater. Res. 40, 179–211 (2010).

    ADS  CAS  Google Scholar 

  44. Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).

    CAS  Google Scholar 

  45. Chen, X. et al. A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1702 (2002). This paper describes multiple cycles of healing in a crosslinked polymer network by thermally reversible covalent bonding.

    ADS  CAS  PubMed  Google Scholar 

  46. Hayes, S. A., Jones, F. R., Marshiya, K. & Zhang, W. A self-healing thermosetting composite material. Composites A 38, 1116–1120 (2007).

    Google Scholar 

  47. Denissen, W., Winne, J. M. & Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 7, 30–38 (2016).

    CAS  PubMed  Google Scholar 

  48. Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).

    ADS  CAS  PubMed  Google Scholar 

  49. Scott, T. F., Schneider, A. D., Cook, W. D. & Bowman, C. N. Photoinduced plasticity in cross-linked polymers. Science 308, 1615–1617 (2005).

    ADS  CAS  PubMed  Google Scholar 

  50. Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

    ADS  CAS  PubMed  Google Scholar 

  51. Corten, C. C. & Urban, M. W. Repairing polymers using oscillating magnetic field. Adv. Mater. 21, 5011–5015 (2009).

    CAS  PubMed  Google Scholar 

  52. Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008). This paper describes the first thermoreversible self-healing rubber made by supramolecular assembly.

    ADS  CAS  PubMed  Google Scholar 

  53. Hentschel, J., Kushner, A. M., Ziller, J. & Guan, Z. Self-healing supramolecular block copolymers. Angew. Chem. Int. Edn Engl. 51, 10561–10565 (2012).

    CAS  Google Scholar 

  54. Das, A. et al. Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interf. 7, 20623–20630 (2015).

    CAS  Google Scholar 

  55. Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010).

    ADS  CAS  PubMed  Google Scholar 

  56. Lu, Y.-X., Tournilhac, F., Leibler, L. & Guan, Z. Making insoluble polymer networks malleable via olefin metathesis. J. Am. Chem. Soc. 134, 8424–8427 (2012).

    CAS  PubMed  Google Scholar 

  57. Imato, K. et al. Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew. Chem. Int. Edn Engl. 51, 1138–1142 (2012).

    CAS  Google Scholar 

  58. Yoon, J. A. et al. Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45, 142–149 (2012).

    ADS  CAS  Google Scholar 

  59. Dry, C. M. Procedures developed for repair of polymer matrix composite materials. Compos. Struct. 35, 263–269 (1996).

    Google Scholar 

  60. White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001). This paper demonstrates the first autonomic self-healing of a fracture in a structural polymer by dispersed liquid-monomer-filled microcapsules and reactive catalyst particles.

    ADS  CAS  PubMed  Google Scholar 

  61. Diesendruck, C. E., Sottos, N. R., Moore, J. S. & White, S. R. Biomimetic self-healing. Angew. Chem. Int. Edn Engl. 54, 10428–10447 (2015).

    CAS  Google Scholar 

  62. Brown, E. N., White, S. R. & Sottos, N. R., Microcapsule induced toughening in a self-healing polymer composite. J. Mater. Sci. 39, 1703–1710 (2004).

    ADS  CAS  Google Scholar 

  63. Jones, A. S., Rule, J. D., Moore, J. S., Sottos, N. R. & White, S. R., Life extension of self-healing polymers with rapidly growing fatigue cracks. J. R. Soc. Interf. 4, 395–403 (2007).

    CAS  Google Scholar 

  64. Kang, S., Baginska, M., White, S. R. & Sottos, N. R. Core–shell polymeric microcapsules with superior thermal and solvent stability. ACS Appl. Mater. Interf. 7, 10952–10956 (2015).

    CAS  Google Scholar 

  65. Kim, B., Jeon, T. Y., Oh, Y.-K. & Kim, S.-H. Microfluidic production of semipermeable microcapsules by polymerization-induced phase separation. Langmuir 31, 6027–6034 (2015).

    CAS  PubMed  Google Scholar 

  66. Norris, C. J. et al. Autonomous stimulus triggered self-healing in smart structural composites. Smart Mater. Struct. 21, 094027 (2012).

    ADS  Google Scholar 

  67. Norris, C. J., Meadway, G. J., O'Sullivan, M. J., Bond, I. P. & Trask, R. S. Self-healing fibre reinforced composites via a bioinspired vasculature. Adv. Funct. Mater. 21, 3624–3633 (2011).

    CAS  Google Scholar 

  68. Toohey, K. S., Sottos, N. R., Lewis, J. A., Moore, J. S. & White, S. R. Self-healing materials with microvascular networks. Nature Mater. 6, 581–585 (2007). This paper describes the self-healing of a polymer coating by monomer-filled, interconnected microvascular channels made by direct-write assembly of a sacrificial scaffold.

    CAS  Google Scholar 

  69. Hamilton, A. R., Sottos, N. R. & White, S. R. Self-healing of internal damage in synthetic vascular materials. Adv. Mater. 22, 5159–5163 (2010).

    CAS  PubMed  Google Scholar 

  70. Hansen, C. J. et al. Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 21, 4143–4147 (2009).

    CAS  Google Scholar 

  71. Hansen, C. J. et al. Accelerated self-healing via ternary interpenetrating microvascular networks. Adv. Mater. 21, 4320–4326 (2011).

    CAS  Google Scholar 

  72. Huang, C.-Y., Trask, R. S. & Bond, I. P. Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature. J. R. Soc. Interf. 7, 1229–1241 (2010).

    CAS  Google Scholar 

  73. Trask, R. S. & Bond, I. P. Bioinspired engineering study of Plantae vascules for self-healing composite structures. J. R. Soc. Interf. 7, 921–931 (2010).

    CAS  Google Scholar 

  74. Therriault, D., White, S. R. & Lewis, J. A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Mater. 2, 265–271 (2003).

    ADS  CAS  Google Scholar 

  75. Patrick, J. F. et al. Continuous self-healing life cycle in vascularized structural composites. Adv. Mater. 26, 4302–4308 (2014). This paper describes the first repeated self-healing of a fibre-reinforced composite by two-part, reactive liquid delivery through 3D, interpenetrating microvascular networks.

    CAS  PubMed  Google Scholar 

  76. Brochu, A. B. W., Chyan, W. J. & Reichert, W. M. Microencapsulation of 2-octylcyanoacrylate tissue adhesive for self-healing acrylic bone cement. J. Biomed. Mater. Res. B 100, 1764–1772 (2012).

    Google Scholar 

  77. Brochu, A. B. W., Evans, G. A. & Reichert, W. M. Mechanical and cytotoxicity testing of acrylic bone cement embedded with microencapsulated 2-octyl cyanoacrylate. J. Biomed. Mater. Res. B 102, 181–189 (2014).

    Google Scholar 

  78. Gladman, A. S., Celestine, A.-D. N., Sottos, N. R. & White, S. R. Autonomic healing of acrylic bone cement. Adv. Healthcare Mater. 4, 202–207 (2015).

    CAS  Google Scholar 

  79. Brochu, A. B. W., Craig, S. L. & Reichert, W. M. Self-healing biomaterials. J. Biomed. Mater. Res. A 96, 492–506 (2011).

    PubMed  Google Scholar 

  80. Odom, S. A. et al. Restoration of conductivity with TTF-TCNQ charge-transfer salts. Adv. Funct. Mater. 20, 1721–1727 (2010).

    CAS  Google Scholar 

  81. Odom, S. A. et al. A Self-healing conductive ink. Adv. Mater. 24, 2578–2581 (2012).

    CAS  PubMed  Google Scholar 

  82. Odom, S. A. et al. Autonomic restoration of electrical conductivity using polymer-stabilized carbon nanotube and graphene microcapsules. Appl. Phys. Lett. 101, 043106 (2012).

    ADS  Google Scholar 

  83. Blaiszik, B. J. et al. Autonomic restoration of electrical conductivity. Adv. Mater. 24, 398–401 (2012).

    CAS  PubMed  Google Scholar 

  84. Tee, B. C.-K., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnol. 7, 825–832 (2012).

    ADS  CAS  Google Scholar 

  85. Birnbaum, K. D. & Alvarado, A. S. Slicing across kingdoms: regeneration in plants and animals. Cell 132, 697–710 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. White, S. R. et al. Restoration of large damage volumes in polymers. Science 344, 620–623 (2014). This paper describes the self-healing of large-scale damage by vascular delivery of two-stage chemistry that first forms a dynamic gel scaffold and then polymerizes.

    ADS  CAS  PubMed  Google Scholar 

  87. Kim, H., Mohapatra, H. & Phillips, S. T. Rapid, on-command debonding of stimuli-responsive crosslinked adhesives by continuous, sequential quinone methide elimination reactions. Angew. Chem. Int. Edn Engl. 54, 13063–13067 (2015).

    CAS  Google Scholar 

  88. Baker, M. S., Kim, H., Olah, M. G., Lewis, G. G. & Phillips, S. T. Depolymerizable poly(benzyl ether)-based materials for selective room temperature recycling. Green Chem. 17, 4541–4545 (2015).

    CAS  Google Scholar 

  89. Hernandez, H. L. et al. Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Adv. Mater. 26, 7637–7642 (2014).

    CAS  PubMed  Google Scholar 

  90. Park, C. W. et al. Thermally triggered degradation of transient electronic devices. Adv. Mater. 27, 3783–3788 (2015).

    CAS  PubMed  Google Scholar 

  91. Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    ADS  CAS  PubMed  Google Scholar 

  92. Diesendruck, C. E. et al. Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nature Chem. 6, 623–628 (2014).

    ADS  CAS  Google Scholar 

  93. Jin, H. et al. Thermally stable autonomic healing in epoxy using a dual-microcapsule system. Adv. Mater. 26, 282–287 (2014).

    CAS  PubMed  Google Scholar 

  94. Maiti, S., Shankar, C., Geubelle, P. H. & Kieffer, J. Continuum and molecular-level modeling of fatigue crack retardation in self-healing polymers. J. Eng. Mater. Technol 128, 595–602 (2006).

    CAS  Google Scholar 

  95. Balazs, A. C. Modeling self-healing materials. Mater. Today 10, 18–23 (2007).

    CAS  Google Scholar 

  96. Jones, A. S. & Dutta, H. Fatigue life modeling of self-healing polymer systems. Mech. Mater. 42, 481–490 (2010).

    Google Scholar 

  97. Zhang, M. Q. & Rong, M. Z. Theoretical consideration and modeling of self-healing polymers. J. Polym. Sci. B 50, 229–241 (2012).

    CAS  Google Scholar 

  98. Soghrati, S. et al. Computational analysis of actively-cooled 3D woven microvascular composites using a stabilized interface-enriched generalized finite element method. Int. J. Heat Mass Transfer 65, 153–164 (2013).

    Google Scholar 

  99. Bluhm, J., Specht, S. & Schröder, J. Modeling of self-healing effects in polymeric composites. Arch. Appl. Mech. 85, 1469–1481 (2015).

    ADS  Google Scholar 

  100. Nie, Z., Xu, S., Seo, M., Lewis, P. C. & Kumacheva, E. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J. Am. Chem. Soc. 127, 8058–8063 (2005).

    CAS  PubMed  Google Scholar 

  101. Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    ADS  CAS  PubMed  Google Scholar 

  102. Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nature Mater. 15, 413–418 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

J.F.P. and M.J.R. are grateful to the Arnold and Mabel Beckman Foundation for financial support through the Beckman Institute Postdoctoral Fellowship Program. The authors thank the Air Force Office of Scientific Research for support through the Center of Excellence in Self-Healing, Regeneration, and Structural Remodeling, the National Science Foundation (DMR 1307354), the Defense Advanced Research Project Agency (FA8650–13-C-7347) and the BP International Center for Advanced Materials (ICAM). We are grateful to D. Loudermilk, C. Klinger, A. Jerez and I. Patrick for assistance with graphics, and G. Wilson and M. Andersson for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott R. White.

Ethics declarations

Competing interests

S.R.W., N.R.S. and J.S.M. have a financial interest in the start-up company AMI, which is mentioned as one of the examples of commercialization activities in the field of self-healing.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrick, J., Robb, M., Sottos, N. et al. Polymers with autonomous life-cycle control. Nature 540, 363–370 (2016). https://doi.org/10.1038/nature21002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature21002

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing