Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years

Abstract

Climate models show that ice-sheet melt will dominate sea-level rise over the coming centuries, but our understanding of ice-sheet variations before the last interglacial 125,000 years ago remains fragmentary. This is because terrestrial deposits of ancient glacial and interglacial periods1,2,3 are overrun and eroded by more recent glacial advances, and are therefore usually rare, isolated and poorly dated4. In contrast, material shed almost continuously from continents is preserved as marine sediment that can be analysed to infer the time-varying state of major ice sheets. Here we show that the East Greenland Ice Sheet existed over the past 7.5 million years, as indicated by beryllium and aluminium isotopes (10Be and 26Al) in quartz sand removed by deep, ongoing glacial erosion on land and deposited offshore in the marine sedimentary record5,6. During the early Pleistocene epoch, ice cover in East Greenland was dynamic; in contrast, East Greenland was mostly ice-covered during the mid-to-late Pleistocene. The isotope record we present is consistent with distinct signatures of changes in ice sheet behaviour coincident with major climate transitions. Although our data are continuous, they are from low-deposition-rate sites and sourced only from East Greenland. Consequently, the signal of extensive deglaciation during short, intense interglacials could be missed or blurred, and we cannot distinguish between a remnant ice sheet in the East Greenland highlands and a diminished continent-wide ice sheet. A clearer constraint on the behaviour of the ice sheet during past and, ultimately, future interglacial warmth could be produced by 10Be and 26Al records from a coring site with a higher deposition rate. Nonetheless, our analysis challenges the possibility of complete and extended deglaciation over the past several million years.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Compilation of findings that constrain the long-term history of the GIS.
Figure 2: Cosmogenic-nuclide systematics and sensitivity to erosion, burial, exposure and mixing.
Figure 3: Map of Greenland.
Figure 4: Seven and a half million years of sediment cosmogenic-nuclide values from offshore East Greenland.

Similar content being viewed by others

References

  1. Nielsen, T. & Kuijpers, A. Only 5 southern Greenland shelf edge glaciations since the early Pliocene. Sci. Rep. 3, 1875 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. De Schepper, S., Gibbard, P. L., Salzmann, U. & Ehlers, J. A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch. Earth Sci. Rev. 135, 83–102 (2014)

    Article  ADS  Google Scholar 

  3. Gibbons, A. B., Megeath, J. D. & Pierce, K. L. Probability of moraine survival in a succession of glacial advances. Geology 12, 327–330 (1984)

    Article  ADS  Google Scholar 

  4. Funder, S. et al. Late Pliocene Greenland—the Kap København Formation in north Greenland. Bull. Geol. Soc. Den. 48, 117–134 (2001)

    Google Scholar 

  5. Butt, A., Elverhøi, A., Forsberg, C. & Solheim, A. Evolution of the Scoresby Sund Fan, central East Greenland—evidence from ODP Site 987. Norsk Geol. Tidskr. 81, 3–15 (2001)

    CAS  Google Scholar 

  6. Larsen, H. C. et al. Seven million years of glaciation in Greenland. Science 264, 952–955 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Helland, P. E. & Holmes, M. A. Surface textural analysis of quartz sand grains from ODP site 918 off the southeast coast of Greenland suggests glaciation of southern Greenland at 11 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 135, 109–121 (1997)

    Article  Google Scholar 

  8. Flesche Kleiven, H., Jansen, E., Fronval, T. & Smith, T. M. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma) —ice-rafted detritus evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 213–223 (2002)

    Article  Google Scholar 

  9. Bierman, P. R. et al. Preservation of a preglacial landscape under the center of the Greenland Ice Sheet. Science 344, 402–405 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Yau, A. M., Bender, M. L., Blunier, T. & Jouzel, J. Setting a chronology for the basal ice at Dye-3 and GRIP: implications for the long-term stability of the Greenland Ice Sheet. Earth Planet. Sci. Lett. 451, 1–9 (2016)

    Article  ADS  CAS  Google Scholar 

  11. Lal, D. Cosmic ray labeling of erosion surfaces; in situ nuclide production rates and erosion models. Earth Planet. Sci. Lett. 104, 424–439 (1991)

    Article  ADS  CAS  Google Scholar 

  12. Granger, D. E. A review of burial dating methods using 26Al and 10Be. Spec. Pap. Geol. Soc. Am. 415, 1–16 (2006)

    Google Scholar 

  13. Heisinger, B. et al. Production of selected cosmogenic radionuclides by muons. Geochim. Cosmochim. Acta 66, A558 (2002)

    Google Scholar 

  14. Elverhøi, A., Hooke, R. L. & Solheim, A. Late Cenozoic erosion and sediment yield from the Svalbard–Barents sea region: implications for understanding erosion of glacierized basins. Quat. Sci. Rev. 17, 209–241 (1998)

    Article  ADS  Google Scholar 

  15. Bell, R. E. et al. Deformation, warming and softening of Greenland’s ice by refreezing meltwater. Nat. Geosci. 7, 497–502 (2014)

    Article  ADS  CAS  Google Scholar 

  16. Sugden, D. E. & Watts, S. H. Tors, felsenmeer, and glaciation in northern Cumberland Peninsula, Baffin Island. Can. J. Earth Sci. 14, 2817–2823 (1977)

    Article  ADS  Google Scholar 

  17. DeConto, R. M. et al. Thresholds for Cenozoic bipolar glaciation. Nature 455, 652–656 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Nelson, A. H., Bierman, P. R., Shakun, J. D. & Rood, D. H. Using in situ cosmogenic 10Be to identify the source of sediment leaving Greenland. Earth Surf. Process. Landf. 39, 1087–1100 (2014)

    Article  ADS  CAS  Google Scholar 

  19. John, K. E. K. S. & Krissek, L. A. The late Miocene to Pleistocene ice-rafting history of southeast Greenland. Boreas 31, 28–35 (2002)

    Article  Google Scholar 

  20. Lisiecki, L. & Raymo, M. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003–PA1020 (2005)

    ADS  Google Scholar 

  21. Goehring, B. M., Kelly, M. A., Schaefer, J. M., Finkel, R. C. & Lowell, T. V. Dating of raised marine and lacustrine deposits in east Greenland using beryllium-10 depth profiles and implications for estimates of subglacial erosion. J. Quat. Sci. 25, 1–10 (2010)

    Article  Google Scholar 

  22. Hill, D. J., Dolan, A. M., Haywood, A. M., Hunter, S. J. & Stoll, D. K. Sensitivity of the Greenland Ice Sheet to Pliocene sea surface temperatures. Stratigraphy 7, 111–122 (2010)

    Google Scholar 

  23. Petrunin, A. G. et al. Heat flux variations beneath central Greenland’s ice due to anomalously thin lithosphere. Nat. Geosci. 6, 746–750 (2013)

    Article  ADS  CAS  Google Scholar 

  24. Bierman, P. R., Davis, P. T., Corbett, L. B., Lifton, N. & Finkel, R. Cold-based, Laurentide ice covered New England’s highest summits during the Last Glacial Maximum. Geology 43, 1059–1062 (2015)

    Google Scholar 

  25. Larsen, N. K. et al. The response of the southern Greenland ice sheet to the Holocene thermal maximum. Geology 43, 291–294 (2015)

    Article  ADS  Google Scholar 

  26. Storms, J. E. A., de Winter, I. L., Overeem, I., Drijkoningen, G. G. & Lykke-Andersen, H. The Holocene sedimentary history of the Kangerlussuaq Fjord-valley fill, West Greenland. Quat. Sci. Rev. 35, 29–50 (2012)

    Article  ADS  Google Scholar 

  27. DePaolo, D. J., Maher, K., Christensen, J. N. & McManus, J. Sediment transport time measured with U-series isotopes: results from ODP North Atlantic drift site 984. Earth Planet. Sci. Lett. 248, 394–410 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Balco, G., Stone, J., Lifton, N. & Dunai, T. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 3, 174–195 (2008)

    Article  Google Scholar 

  29. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Spratt, R. M. & Lisiecki, L. E. A Late Pleistocene sea level stack. Clim. Past Discuss. 11, 3699–3728 (2015)

    ADS  Google Scholar 

  31. Clark, P. U. & Mix, A. C. Ice sheets and sea level of the last glacial maximum. Quat. Sci. Rev. 21, 1–7 (2002)

    Article  ADS  Google Scholar 

  32. Hemming, S. R., Bond, G. C., Broecker, W. S., Sharp, W. D. & Klas-Mendelson, M. Evidence from 40Ar/39Ar ages of individual hornblende grains for varying Laurentide sources of iceberg discharges 22,000 to 10,500 yr B.P. Quat. Res. 54, 372–383 (2000)

    Article  CAS  Google Scholar 

  33. Dowdeswell, J. A., Cofaigh, C. Ó., Andrews, J. T. & Scourse, J. D. Workshop explores debris transported by icebergs and paleoenvironmental implications. Eos 82, 382–386 (2001)

    Article  ADS  Google Scholar 

  34. Martin, T. & Wadhams, P. Sea-ice flux in the East Greenland Current. Deep Sea Res. Part II 46, 1063–1082 (1999)

    Article  ADS  Google Scholar 

  35. Bridgewater, D., Keto, L., McGregor, V. R. & Myers, J. S. in Geology of Greenland (eds Escher, E. & Watt, W. S. ) 304–339 (Geological Survey of Greenland, 1976)

  36. Larsen, H. C. Geological perspectives of the East Greenland continental margin. Bull. Geol. Soc. Den. 29, 77–101 (1980)

    Google Scholar 

  37. Linthout, K., Troelstra, S. R. & Kuijpers, A. Provenance of coarse ice-rafted detritus near the SE Greenland margin. Netherlands J. Geosci. 79, 109–121 (2000)

    Article  Google Scholar 

  38. Spezzaferri, S. in Proc. ODP Sci. Res. Vol. 152 (eds Larsen, H. C., Saunders, A. & Clift, P. D. ) 161–190 (Ocean Drilling Program, 1998)

    Google Scholar 

  39. Molnia, B. F. in Glacial-Marine Sedimentation (ed. Molnia, B. F. ) 593–626 (Plenum, 1983)

  40. Party, S. S. in Proc. ODP Init. Rep. Vol. 152 (eds Larsen, H. C., Saunders, A. & Clift, P. D. ) 177–256 (Ocean Drilling Program, 1994)

    Google Scholar 

  41. Greve, R. Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet. Ann. Glaciol. 42, 424–432 (2005)

    Article  ADS  Google Scholar 

  42. Kaus, B. J. P. Heating glaciers from below. Nat. Geosci. 6, 683–684 (2013)

    Article  ADS  CAS  Google Scholar 

  43. Fyke, J. G., Sacks, W. J. & Lipscomb, W. H. A technique for generating consistent ice sheet initial conditions for coupled ice sheet/climate models. Geosci. Model Dev. 7, 1183–1195 (2014)

    Article  ADS  Google Scholar 

  44. MacGregor, J. A. et al. A synthesis of the basal thermal state of the Greenland Ice Sheet. J. Geophys. Res. 121, 1328–1350 (2016)

    Article  Google Scholar 

  45. Bierman, P., Marsella, K., Patterson, C., Davis, P. & Caffee, M. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: a multiple nuclide approach. Geomorphology 27, 25–39 (1999)

    Article  ADS  Google Scholar 

  46. Nishiizumi, K. Preparation of 26Al AMS standards. Nucl. Instrum. Methods Phys. Res. B 223/224, 388–392 (2004)

    Article  ADS  CAS  Google Scholar 

  47. Nishiizumi, K. et al. Absolute calibration of 10Be AMS standards. Nucl. Instrum. Methods Phys. Res. B 258, 403–413 (2007)

    Article  ADS  CAS  Google Scholar 

  48. Chmeleff, J., Von Blanckenburg, F., Kossert, K. & Jakob, D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. B 268, 192–199 (2010)

    Article  ADS  CAS  Google Scholar 

  49. Korschinek, G. et al. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. B 268, 187–191 (2010)

    Article  ADS  CAS  Google Scholar 

  50. Corbett, L., Bierman, P. & Rood, D. Constraining multi-stage exposure-burial scenarios for boulders preserved beneath cold-based glacial ice in Thule, northwest Greenland. Earth Planet. Sci. Lett. 440, 147–157 (2016)

    Article  ADS  CAS  Google Scholar 

  51. Stone, J. Air pressure and cosmogenic isotope production. J. Geophys. Res. 105, 23753–23759 (2000)

    Article  ADS  CAS  Google Scholar 

  52. Argento, D., Reedy, R. & Stone, J. Modeling the earth’s cosmic radiation. Nucl. Instrum. Methods Phys. Res. B 294, 464–469 (2013)

    Article  ADS  CAS  Google Scholar 

  53. Argento, D., Stone, J., Reedy, R. & O’Brien, K. Physics-based modeling of cosmogenic nuclides part II—key aspects of in-situ cosmogenic nuclide production. Quat. Geochronol. 26, 44–55 (2015)

    Article  Google Scholar 

  54. Borchers, B. et al. Geological calibration of spallation production rates in the CRONUS-Earth project. Quat. Geochronol. 31, 188–198 (2016)

    Article  Google Scholar 

  55. Lifton, N., Sato, T. & Dunai, T. J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 386, 149–160 (2014)

    Article  ADS  CAS  Google Scholar 

  56. Corbett, L. B. et al. Elevated cosmogenic 26-Al/10-Be production ratio at high latitude. Eos abstr. C53C–0739 (2016)

  57. Party, S. S. in Proc. Ocean Drilling Program (eds Jansen, E., Raymo, M. E. & Blum, P. ) 345–387 (Ocean Drilling Program, 1996)

  58. Kohl, C. P. & Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim. Cosmochim. Acta 56, 3583–3587 (1992)

    Article  ADS  CAS  Google Scholar 

  59. Corbett, L. B., Bierman, P. R. & Rood, D. H. An approach for optimizing in situ cosmogenic 10Be sample preparation. Quat. Geochronol. 33, 24–34 (2016)

    Article  Google Scholar 

  60. Rood, D. H., Brown, T. A., Finkel, R. C. & Guilderson, T. P. Poisson and non-Poisson uncertainty estimations of 10Be/9Be measurements at LLNL–CAMS. Nucl. Instrum. Methods Phys. Res. B 294, 426–429 (2013)

    Article  ADS  CAS  Google Scholar 

  61. Rood, D. H., Hall, S., Guilderson, T. P., Finkel, R. C. & Brown, T. A. Challenges and opportunities in high-precision Be-10 measurements at CAMS. Nucl. Instrum. Methods Phys. Res. B 268, 730–732 (2010)

    Article  ADS  CAS  Google Scholar 

  62. Xu, S., Freeman, S. P. H. T., Rood, D. H. & Shanks, R. P. Decadal 10Be, 26Al and 36Cl QA measurements on the SUERC 5 MV accelerator mass spectrometer. Nucl. Instrum. Methods Phys. Res. B 361, 39–42 (2015)

    Article  ADS  CAS  Google Scholar 

  63. Cande, S. C. & Kent, D. V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100, 6093–6095 (1995)

    Article  ADS  Google Scholar 

  64. Fukuma, K. in Proc. ODP Sci. Res. Vol. 152 (eds Saunders, A. D., Larsen, H. C. & Wise, S. W. Jr ) 265–269 (Ocean Drilling Program, 1998)

    Google Scholar 

  65. Wei, W. in Proc. ODP Sci. Res. Vol. 152 (eds Saunders, A. D., Larsen, H. C. & Wise, S. W. Jr ) 147–160 (Ocean Drilling Program, 1998)

    Google Scholar 

  66. Spezzaferri, S. in Proc. ODP Sci. Res. Vol. 152 (eds Saunders, A. D., Larsen, H. C. & Wise, S. W. Jr ) 161–189 (Ocean Drilling Program, 1998)

    Google Scholar 

  67. Norris, T. L., Gancarz, A. J., Rokop, D. J. & Thomas, K. W. Half-life of 26Al. J. Geophys. Res. 88, B331–B333 (1983)

    Article  Google Scholar 

  68. Carlson, A. E. et al. Earliest Holocene south Greenland ice sheet retreat within its late Holocene extent. Geophys. Res. Lett. 41, 5514–5521 (2014)

    Article  ADS  Google Scholar 

  69. Rohling, E. J. et al. Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508, 477–482 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  70. de Boer, B., Lourens, L. J. & van de Wal, R. S. W. Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene. Nat. Commun. 5, 2999 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  71. de Vernal, A. & Hillaire-Marcel, C. Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320, 1622–1625 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, 153 (2015)

    Article  CAS  Google Scholar 

  73. Elderfield, H. et al. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337, 704–709 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Sosdian, S. & Rosenthal, Y. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science 325, 306–310 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Hansen, J., Sato, M., Russell, G. & Kharecha, P. Climate sensitivity, sea level and atmospheric carbon dioxide. Phil. Trans. R. Soc. Lond. A 371, http://dx.doi.org/10.1098/rsta.2012.0294 (2013)

  76. Eldrett, J. S., Harding, I. C., Wilson, P. A., Butler, E. & Roberts, A. P. Continental ice in Greenland during the Eocene and Oligocene. Nature 446, 176–179 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Tripati, A. K. et al. Evidence for glaciation in the Northern Hemisphere back to 44 Ma from ice-rafted debris in the Greenland Sea. Earth Planet. Sci. Lett. 265, 112–122 (2008)

    Article  ADS  CAS  Google Scholar 

  78. Nishiizumi, K. et al. In situ produced cosmogenic nuclides in GISP2 rock core from Greenland summit. Eos 77, abstr. OS41B–10 (1996)

    Google Scholar 

  79. Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111–114 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reyes, A. V. et al. South Greenland ice-sheet collapse during Marine Isotope Stage 11. Nature 510, 525–528 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Bennike, O. et al. A multi-proxy study of Pliocene sediments from Île de France, North-East Greenland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 186, 1–23 (2002)

    Article  Google Scholar 

  82. Feyling-Hanssen, R. W., Funder, S. & Petersen, K. S. The Lodin Elv Formation; a Plio-Pleistocene occurrence in Greenland. Bull. Geol. Soc. Den. 31, 81–106 (1983)

    Google Scholar 

  83. Bennike, O. et al. Early Pleistocene sediments on Store Koldewey, northeast Greenland. Boreas 39, 603–619 (2010)

    Google Scholar 

  84. Knutz, P. C., Hopper, J. R., Gregersen, U., Nielsen, T. & Japsen, P. A contourite drift system on the Baffin Bay–West Greenland margin linking Pliocene Arctic warming to poleward ocean circulation. Geology 43, 907–910 (2015)

    Article  ADS  Google Scholar 

  85. Koenig, S. J. et al. Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene. Clim. Past 11, 369–381 (2015)

    Article  Google Scholar 

  86. Lunt, D. J., Foster, G. L., Haywood, A. M. & Stone, E. J. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature 454, 1102–1105 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Solgaard, A. M., Reeh, N., Japsen, P. & Nielsen, T. Snapshots of the Greenland ice sheet configuration in the Pliocene to early Pleistocene. J. Glaciol. 57, 871–880 (2011)

    Article  ADS  Google Scholar 

  88. Dolan, A. M. et al. Using results from the PlioMIP ensemble to investigate the Greenland Ice Sheet during the mid-Pliocene Warm Period. Clim. Past 11, 403–424 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Research supported by NSF ARC-1023191. A. Nelson prepared some samples. W. Hale and the Bremen Core Repository facilitated core sampling. G. Balco provided input on muon production. We thank K. St John for providing ODP site 918 mass accumulation rate data, B. de Boer for ice sheet model output, W. Huang for running foraminifer stable isotope samples, and S. Xu and the staff of the SUERC AMS laboratory for support during 26Al measurements. This is LLNL-JRNL-701099.

Author information

Authors and Affiliations

Authors

Contributions

P.R.B. and J.D.S. designed the experiment. J.D.S. oversaw core sampling. P.R.B. and L.B.C. did and oversaw laboratory work. D.H.R., S.R.Z. and P.R.B. performed isotopic analyses. P.R.B., J.D.S., L.B.C. and D.H.R. interpreted the data and all authors contributed to the preparation of the paper.

Corresponding author

Correspondence to Paul R. Bierman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information

Nature thanks D. Dahl-Jensen, D. Granger and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Age–depth models for Sites 918 and 987.

Chronostratigraphic constraints19,40 are identified by symbols. (mbsf, metres below seafloor.)

Extended Data Figure 2 Site 918 planktonic δ18O stratigraphy.

a, The global benthic LR04 δ18O stack on its timescale20. VPDB, Vienna Pee-Dee Belemnite standard. b, A planktonic (N. pachyderma, left-coiling) δ18O record from ODP site 646 off southern Greenland, also on the global benthic δ18O stack timescale71. c, The planktonic (N. pachyderma, left-coiling) δ18O record from Site 918 on its depth scale. Notable interglacials in the LR04 stack and their interpreted correlatives at Site 918 are numbered, and the location of the Brunhes–Matuyama magnetic reversal in each record is denoted by the vertical dotted black line. The well resolved ODP site 646 δ18O record is shown to provide a nearby planktonic record for comparison to Site 918.

Extended Data Figure 3 Comparing Site 918 decay-corrected 10Be concentrations to Site 918 sand (>63 μm) concentrations and marine δ18O over the past 7.5 Myr.

All data have been binned to the same age intervals as the 10Be data. Coarse fraction indicates sand. The r2 and P values quantify the correlations of the 10Be concentrations with the sand concentrations and marine δ18O values.

Extended Data Figure 4 A simple forward model of Greenlandic cosmogenic-nuclide concentrations and ratios over the past 5 million years.

ae, Simulated (coloured lines) 26Al/10Be ratios (a) and 10Be concentrations (b) of glacially eroded material from a box model with ice extent parameterized as a function of GIS extent from a full ice-sheet model70 (c), marine δ18O (ref. 20) (d), and sea level69 (e). The colours of the simulated records in a and b correspond to the associated drivers of the model in c, d and e. The ice extent parameterization is represented by the blue shading in c, d and e. Sites 918 and 987 cosmogenic-nuclide records are shown by 1σ grey shading in a and b, and simulated records have been binned to the same resolution. f, 26Al/10Be–10Be relationships in the simulated (colours) and ODP Site 918 (black) records. Error bars are 1σ. See Methods for model details and https://github.com/shakunj/Bierman-et-al-2016-Nature for computer code.

Extended Data Figure 5 Fully referenced version of Fig. 2. NH, Northern Hemisphere.

Data are from refs 1, 4, 5, 7, 8, 9, 10, 17, 19 and 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87.

Supplementary information

Supplementary Data

This file contains all relevant isotopic data. (XLSX 86 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bierman, P., Shakun, J., Corbett, L. et al. A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years. Nature 540, 256–260 (2016). https://doi.org/10.1038/nature20147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature20147

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing