Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A comprehensive transcriptional map of primate brain development

This article has been updated

Abstract

The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (Macaca mulatta) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-resolution transcriptional profiling of rhesus monkey brain development.
Figure 2: Transcriptional dynamics across brain regions and ages.
Figure 3: Variable onset of biological processes between brain regions.
Figure 4: Protracted maturation of neocortex through young adulthood.
Figure 5: Spatiotemporal localization of disease-specific associations in developing cortex.
Figure 6: Conserved and human-specific gene expression trajectories in frontal cortex.

Change history

  • 21 July 2016

    The OLIG1 and STY7 gene labels in Fig. 6d and legend were reversed.

References

  1. Workman, A. D., Charvet, C. J., Clancy, B., Darlington, R. B. & Finlay, B. L. Modeling transformations of neurodevelopmental sequences across mammalian species. J. Neurosci. 33, 7368–7383 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smart, I. H. M., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002)

    Article  PubMed  Google Scholar 

  3. MacLean, E. L. et al. The evolution of self-control. Proc. Natl Acad. Sci. USA 111, E2140–E2148 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Caldwell, C. A. & Whiten, A. in Primates in Perspective 652–662 (Oxford Univ. Press, 2011)

  5. Izpisua Belmonte, J. C. et al. Brains, genes, and primates. Neuron 86, 617–631 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. Miller, D. J. et al. Prolonged myelination in human neocortical evolution. Proc. Natl Acad. Sci. USA 109, 16480–16485 (2012)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N. & Goldman-Rakic, P. S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Gibbs, R. A. et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222–234 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Bernard, A. et al. Transcriptional architecture of the primate neocortex. Neuron 73, 1083–1099 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeng, H. et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149, 483–496 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Somel, M. et al. Transcriptional neoteny in the human brain. Proc. Natl Acad. Sci. USA 106, 5743–5748 (2009)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Liu, X. et al. Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Res. 22, 611–622 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colantuoni, C. et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478, 519–523 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bakken, T. E. et al. Spatiotemporal dynamics of the postnatal developing primate brain transcriptome. Hum. Mol. Genet. 24, 4327–4339 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Molyneaux, B. J. et al. DeCoN: genome-wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection in neocortex. Neuron 85, 275–288 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rakic, P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183, 425–427 (1974)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Hughes, J. F. et al. Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature 483, 82–86 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elston, G. N., Oga, T. & Fujita, I. Spinogenesis and pruning scales across functional hierarchies. J. Neurosci. 29, 3271–3275 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scott, J. et al. Longitudinal analysis of the developing rhesus monkey brain using magnetic resonance imaging: birth to adulthood. Brain Struct. Funct. 221, 2847–2871 (2016)

    Article  PubMed  Google Scholar 

  26. Hasegawa, M. et al. Development of myelination in the human fetal and infant cerebrum: a myelin basic protein immunohistochemical study. Brain Dev. 14, 1–6 (1992)

    Article  CAS  PubMed  Google Scholar 

  27. Sorensen, S. A. et al. Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. Cereb. Cortex 25, 433–449 (2015)

    Article  PubMed  Google Scholar 

  28. Pletikos, M. et al. Temporal specification and bilaterality of human neocortical topographic gene expression. Neuron 81, 321–332 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. O’Leary, D. D. M. & Chou, S.-J. J. & Sahara, S. Area patterning of the mammalian cortex. Neuron 56, 252–269 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. De la Rossa, A. et al. In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat. Neurosci. 16, 193–200 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Rakic, P. Prenatal development of the visual system in rhesus monkey. Phil. Trans. R. Soc. Lond. B 278, 245–260 (1977)

    Article  ADS  CAS  Google Scholar 

  32. Tropea, D. et al. Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex. Nature Neurosci. 9, 660–668 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. Willsey, A. J. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155, 997–1007 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Parikshak, N. N. et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bishop, K. M., Goudreau, G. & O’Leary, D. D. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288, 344–349 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Schoenebeck, J. J. et al. Variation of BMP3 contributes to dog breed skull diversity. PLoS Genet. 8, e1002849 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsumoto, A. et al. LIN7A depletion disrupts cerebral cortex development, contributing to intellectual disability in 12q21-deletion syndrome. PLoS One 9, e92695 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bianchi, S. et al. Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proc. Natl Acad. Sci. USA 110 (Suppl 2), 10395–10401 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Huttenlocher, P. R. Synaptic density in human frontal cortex — developmental changes and effects of aging. Brain Res. 163, 195–205 (1979)

    Article  CAS  PubMed  Google Scholar 

  40. Rakic, P., Bourgeois, J. P. & Goldman-Rakic, P. S. Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness. Prog. Brain Res. 102, 227–243 (1994)

    Article  CAS  PubMed  Google Scholar 

  41. Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997)

    Article  CAS  PubMed  Google Scholar 

  42. Jackman, S. L., Turecek, J., Belinsky, J. E. & Regehr, W. G. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature 529, 88–91 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pouchelon, G. et al. Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons. Nature 511, 471–474 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  44. De Marco García, N. V., Karayannis, T. & Fishell, G. Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature 472, 351–355 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iossifov, I. et al. Low load for disruptive mutations in autism genes and their biased transmission. Proc. Natl Acad. Sci. USA 112, E5600–E5607 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de Lacy, N. & King, B. H. Revisiting the relationship between autism and schizophrenia: toward an integrated neurobiology. Annu. Rev. Clin. Psychol. 9, 555–587 (2013)

    Article  PubMed  Google Scholar 

  47. Stein, J. L. et al. A quantitative framework to evaluate modeling of cortical development by neural stem cells. Neuron 83, 69–86 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Bystron, I., Blakemore, C. & Rakic, P. Development of the human cerebral cortex: Boulder Committee revisited. Nature Rev. Neurosci. 9, 110–122 (2008)

    Article  CAS  Google Scholar 

  51. Price, J., Russchen, F. & Amaral, D. in Handbook of Chemical Neuroanatomy (eds Hokfelt, B. & Swanson, L. ) 279–381 (Elsevier, 1987)

  52. Berger, B. & Alvarez, C. Neurochemical development of the hippocampal region in the fetal rhesus monkey, III: calbindin-D28K, calretinin and parvalbumin with special mention of cajal-retzius cells and the retrosplenial cortex. J. Comp. Neurol. 366, 674–699 (1996)

    Article  CAS  PubMed  Google Scholar 

  53. Paxinos, G. The Rhesus Monkey Brain in Stereotaxic Coordinates (Academic Press, 2009)

  54. Karnovsky, M. J. & Roots, L. A ‘direct-coloring’ thiocholine method for cholinesterases. J. Histochem. Cytochem. 12, 219–221 (1964)

    Article  CAS  PubMed  Google Scholar 

  55. Winrow, C. J. et al. Refined anatomical isolation of functional sleep circuits exhibits distinctive regional and circadian gene transcriptional profiles. Brain Res. 1271, 1–17 (2009)

    Article  CAS  PubMed  Google Scholar 

  56. Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003)

    Article  CAS  PubMed  Google Scholar 

  57. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007)

    PubMed  MATH  Google Scholar 

  58. Miller, J. A. et al. Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-seq. BMC Genomics 15, 154 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  60. Blankenberg, D. et al. Galaxy: a web-based genome analysis tool for experimentalists. Curr. Protoc. Mol. Biol. Chapter 19, Unit 19.10.1–21 (2010)

  61. Giardine, B. et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zuber, V. & Strimmer, K. High-dimensional regression and variable selection using CAR scores. Stat. Appl. Genet. Mol. Biol. 10, 1–22 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. Bar-Joseph, Z. et al. Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc. Natl Acad. Sci. USA 105, 955–960 (2008)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neurosci. 19, 335–346 (2016)

    Article  CAS  PubMed  Google Scholar 

  67. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Langfelder, P. & Horvath, S. Fast R functions for robust correlations and hierarchical clustering. J. Stat. Softw. 46, http://dx.doi.org/10.18637/jss.v046.i11 (2012)

  70. Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 1832–1844 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Verloes, A., Drunat, S., Gressens, P. & Passemard, S. in GeneReviews (eds Pagon, R. A. et al.) (Univ. Washington, 2013)

  72. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014)

  73. Karaca, E. et al. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease. Neuron 88, 499–513 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zapala, M. A. & Schork, N. J. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc. Natl Acad. Sci. USA 103, 19430–19435 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stead, J. D. H. et al. Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum. J. Neurosci. 26, 345–353 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Thompson, C. L. et al. A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. Neuron 83, 309–323 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44–57 (2009)

    Article  CAS  Google Scholar 

  78. Huang, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009)

    Article  CAS  Google Scholar 

  79. Smedley, D. et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 43, W589–W598 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Proux, E., Studer, R. A., Moretti, S. & Robinson-Rechavi, M. Selectome: a database of positive selection. Nucleic Acids Res. 37, D404–D407 (2009)

    Article  CAS  PubMed  Google Scholar 

  81. Moretti, S. et al. Selectome update: quality control and computational improvements to a database of positive selection. Nucleic Acids Res. 42, D917–D921 (2014)

    Article  CAS  PubMed  Google Scholar 

  82. Pirooznia, M. et al. SynaptomeDB: an ontology-based knowledgebase for synaptic genes. Bioinformatics 28, 897–899 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Blue, M. E. & Parnavelas, J. G. The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J. Neurocytol. 12, 697–712 (1983)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Allen Institute for Brain Science founders, P. G. Allen and J. Allen, for their vision, encouragement, and support. The authors also thank J. Montiel and W. Zhi Wang for their advice on developmental neuroanatomy and experimental design. We also wish to acknowledge the California National Primate Research Center (NIH Award Number RR00169) for providing tissues and Covance Genomics Laboratory (Seattle, Washington) for microarray probe generation, hybridization and scanning. The project was supported by NIH Blueprint for Neuroscience Research contract HHSN-271-2008-0047 (PI: E. Lein, Allen Institute for Brain Science) from the National Institute of Mental Health. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health or the National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Contributions

T.E.B., J.A.M., S.-L.D., L.N., A.S., R.A.D., J.J.R., S.Sha., M.J.H., D.G.A., A.Be. and E.S.L. contributed significantly to the analysis. K.A.S., L.N., A.S., R.A.D., J.G.H., R.F.H., Z.M., C.D., D.G.A., A.Be. and E.S.L. contributed significantly to the experimental and technical design. T.E.B., J.A.M., T.L., S.Sha., and A.Be. contributed significantly to generation of the data. S.M.S., K.A.S., L.N., T.L., P.W., J.G.H., M.J.H., J.W.P., C.D., A.R.J., D.G.A., A.Be. and E.S.L. contributed significantly to supervision and management of the project. K.A., N.De., T.D., J.G., G.Gu., C.L.K., C.L., C.-K.L., P.D.P., T.R., K.R. and D.S. contributed to the analysis. N.De, T.A.D., A.E., J.G., R.A.G., G.Gu., D.R.H., A.H.-S., J.J., C.L.K., C.L., C.-K.L., F.L., J.N., J.R., Z.L.R. and W.B.W. contributed to the experimental and technical design. K.A., J.A., C.B., J.L.B., D.B., K.Bi., A.Bo., K.Br., S.B., E.B., S.Cal., A.C., S.Cat., M.C., J.C., N.De., T.A.D., N.Do., G.Ge., T.L.G., J.G., L.G., B.G., G.Gu., J.H., Z.H., N.H., R.H., M.K., A.K., C.L.K., C.L., C.-K.L., F.L., N.Ma., R.M., J.M., N.Mo., E.M., K.N., J.N., A.O., E.O., J.Pa., S.P., J.Pe., L.P., M.R., Z.L.R., T.R., B.R., K.R., D.R., M.S., N.Sh., S.Shi., N.Sj., A.J.S., R.T., L.V., U.W., W.B.W., C.Wh., J.W., R.Y. and B.L.Y. contributed to generation of the data. A.Bo., E.B., M.C., T.D., T.A.D., A.E., E.F., B.G., M.K., C.L., L.L., N.Ma., S.P., M.R. and A.J.S. contributed to supervision and management of the project. T.E.B., J.A.M. and E.S.L. wrote the manuscript.

Corresponding author

Correspondence to Ed S. Lein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Detailed technical protocol documents describing tissue processing and microarray profiling are available at the Allen Brain Atlas portal (http://www.brain-map.org) through the non-human primate link, or directly from the NIH Blueprint NHP Atlas website (http://www.blueprintnhpatlas.org), under the documentation tab. Microarray data can be viewed online by selecting microdissection under the microarray tab and can be downloaded under the download tab.

Reviewer Information Nature thanks P. Carninci and C. Sherwood and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Anatomical parcellations of developing cortical and subcortical regions.

Nissl stained sections of major brain regions sampled in this resource. Green lines demarcate subregions that were isolated by laser capture microdissection and transcriptionally profiled.

Extended Data Figure 2 Canonical cell type marker gene expression across cortical development.

Heat maps of average gene expression in cortical layers at different prenatal (E40–E120) and postnatal ages (0–48 months). Anterior cingulate gyrus (ACG) and primary visual cortex (V1) were sampled at all ages, while primary somatosensory cortex (S1) was sampled in a limited set of layers prenatally. Several additional prefrontal and visual areas were sampled postnatally: orbital gyrus (OG), dorsolateral prefrontal cortex (dlPFC), rectal gyrus (RG) and secondary visual cortex (V2).

Extended Data Figure 3 Sex differential expression is limited to two Y chromosome genes.

a, Quantile–quantile plot of observed versus expected sex differential expression for all 12,441 genes across brain regions during prenatal development. A linear mixed model was fit to all prenatal brain samples with a fixed effect for sex and random effects for brain region, age and donor (see Supplementary Table 11). Genes were ordered by the observed sex effect and plotted versus the expected sex effect based on permutation testing. A 95% confidence interval was calculated (dashed line) based on permutations, and 11 genes in males and no genes in females were more highly expressed than expected by chance. Seven of these 11 genes were nominally significant and included at least two Y chromosome genes (EIF1AY, LOC720563) and potentially a third gene (LOC693361) whose microarray probe maps to an unannotated region of the Y chromosome.

Extended Data Figure 4 Expression rates of change have similar developmental trajectories across all brain regions.

a, Rates of expression change in all available brain subregions and ages. b, Box plots summarizing the number of significantly increasing or decreasing genes between adjacent time points in all subregions. At all ages, the majority of subregions had at least 1,000 genes (red line) that were significantly changing (ANOVA FDR < 0.05, fold change >1.25). c, Regional specificity of increased autophagy may reflect differential timing of synaptic pruning. Enrichment for autophagy of the most dynamically increasing (upper triangle) and decreasing (lower triangle) genes with samples ordered and labelled as in Fig. 3b. For each gene list, the colour corresponds to the proportion of GO terms that are more specific (that is, ‘child’) terms subsumed under autophagy (GO:0006914) based on the GO hierarchy and that are significantly enriched (nominal P < 0.05). Note that autophagy was selectively turned on in occipital cortex after infancy and in hippocampus after juvenility (arrows).

Extended Data Figure 5 Variable synchrony of biological processes between brain regions.

a, Example of variable timing of GO process activity (black boxes) between regions, resulting in different age overlaps (mini-table below). Note that E50 was the earliest age for which we could calculate expression change. AM, amygdala; BG, basal ganglia; HP, hippocampus; NCX, neocortex. b, Average pairwise age overlaps (black, solid line) for all increasing (top) and decreasing (bottom) GO processes were greater than expected by chance (black, dotted line). c, Rank ordered timing of GO processes in Fig. 4c with weighted average rank for each region (asterisks). d, Developmental expression of mature oligodendrocyte markers in four myelin-enriched brain subregions with early increased expression in globus pallidus (arrows) for MOG and ERMN, but not MAL and ASPA.

Extended Data Figure 6 Neurogenesis and gliogenesis in S1 occur at a time course intermediate between V1 and ACG.

a, Genes with enriched expression in ACG relative to V1 between E70–E90 also show enriched expression in S1 relative to V1, suggesting that the timing of primary sensory regions is non-uniform in L5/L6 (top), subventricular zone (SZ) (middle), and ventricular zone (VZ) (bottom). Each plot shows the average enrichment (log2 fold change) in S1 vs V1 (y axis) compared with the average enrichment in ACG vs V1 (x axis) between E70–E90 for all genes significantly enriched in ACG in at least two of the three ages between E70–E90 (Fig. 5a). b, Marker genes for cell types (compare with Fig. 5e–h) show expression patterns in S1 which are either consistent with ACG (that is, GAD1) or intermediate between V1 and ACG (that is, AQP4). c, Genes with enriched expression for V1 (FGFR3) or ACG (CBLN2) across development show intermediate expression in S1, suggesting that these genes may show cortical gradients rather than specific expression in V1 or ACG. d, Genes with common expression patterning in V1 and ACG can show different patterns in S1, suggesting that rate of neuron and glia development is not the whole story. For example, SPARCL1 and ABCA8 both show increased expression with time in VZ with V1 showing a delay relative to ACG; however, these two genes show different temporal delays in S1.

Extended Data Figure 7 Evolutionary conservation of developmental expression.

a, Median pairwise correlations of expression trajectories in prefrontal cortex within human (black) and between human and rhesus monkey (red) decrease for less variable genes in rhesus monkey (genes ordered by standard deviation of expression across ages). b, Left: proportion of genes assigned to different conservation categories is robust to correlation threshold. Right: developmentally dynamic genes are more highly conserved (genes ordered by same method as in a). For each set of genes, the average ± standard deviation of the proportion of genes in each conservation category was estimated using correlation thresholds ranging from 0 to 0.9. c, Left: segmented linear fits of expression for example gene with estimated breakpoints in each species (dashed lines). Right: distribution of breakpoint ages for 179 decreasing genes with good fits to the model in frontal and primary visual cortex. Colours and symbols are consistent in c and d. d, Segmented linear fits with breakpoint estimation of synaptic density for prefrontal and primary visual cortex based on previously published studies (see Methods). e, Breakpoint comparison of 179 increasing genes including 81 synapse related genes (red) between cortical areas within species. Genes that fall on the lines peak at the same age in primary visual and prefrontal cortex. f, g, Comparison of breakpoint timing between human, rhesus monkey and rat in prefrontal cortex (f) and additional brain regions (g). Genes that plateau in expression after their breakpoint in human (grey points), and genes that significantly decrease (blue symbols) or increase (red symbols) expression with 95% confidence intervals (grey lines) of breakpoints. Black lines correspond to equal (solid) ± a window (dashed) of developmental ages between species. pcd, post-conceptional days.

Extended Data Table 1 Rhesus monkey donor information

Supplementary information

Supplementary Data

This file contains Supplementary Tables 1-11 – see Supplementary Information document for full legends. (XLSX 18413 kb)

Supplementary Information

This file contains full legends for Supplementary Tables 1-11. (PDF 90 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakken, T., Miller, J., Ding, SL. et al. A comprehensive transcriptional map of primate brain development. Nature 535, 367–375 (2016). https://doi.org/10.1038/nature18637

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature18637

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing