Dynamically encircling an exceptional point for asymmetric mode switching

Abstract

Physical systems with loss or gain have resonant modes that decay or grow exponentially with time. Whenever two such modes coalesce both in their resonant frequency and their rate of decay or growth, an ‘exceptional point’ occurs, giving rise to fascinating phenomena that defy our physical intuition1,2,3,4,5,6. Particularly intriguing behaviour is predicted to appear when an exceptional point is encircled sufficiently slowly7,8, such as a state-flip or the accumulation of a geometric phase9,10. The topological structure of exceptional points has been experimentally explored11,12,13, but a full dynamical encircling of such a point and the associated breakdown of adiabaticity14,15,16,17,18,19,20,21 have remained out of reach of measurement. Here we demonstrate that a dynamical encircling of an exceptional point is analogous to the scattering through a two-mode waveguide with suitably designed boundaries and losses. We present experimental results from a corresponding waveguide structure that steers incoming waves around an exceptional point during the transmission process. In this way, mode transitions are induced that transform this device into a robust and asymmetric switch between different waveguide modes. This work will enable the exploration of exceptional point physics in system control and state transfer schemes at the crossroads between fundamental research and practical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mode evolution in the vicinity of an exceptional point.
Figure 2: Chiral transport in the presence of bulk absorption.
Figure 3: Microwave measurements.

References

  1. 1

    Berry, M. V. Physics of nonhermitian degeneracies. Czech. J. Phys. 54, 1039–1047 (2004)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Rotter, I. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A 42, 153001 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Moiseyev, N. Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, 2011)

  5. 5

    Heiss, W. D. The physics of exceptional points. J. Phys. A 45, 444016 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Cao, H. & Wiersig, J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 87, 61–111 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Lefebvre, R., Atabek, O., Šindelka, M. & Moiseyev, N. Resonance coalescence in molecular photodissociation. Phys. Rev. Lett. 103, 123003 (2009)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Atabek, O. et al. Proposal for a laser control of vibrational cooling in Na2 using resonance coalescence. Phys. Rev. Lett. 106, 173002 (2011)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Latinne, O. et al. Laser-induced degeneracies involving autoionizing states in complex atoms. Phys. Rev. Lett. 74, 46–49 (1995)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Mailybaev, A. A., Kirillov, O. N. & Seyranian, A. P. Geometric phase around exceptional points. Phys. Rev. A 72, 014104 (2005)

    ADS  Article  Google Scholar 

  11. 11

    Dembowski, C. et al. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett. 86, 787–790 (2001)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Lee, S.-B. et al. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett. 103, 134101 (2009)

    ADS  Article  Google Scholar 

  13. 13

    Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Uzdin, R., Mailybaev, A. & Moiseyev, N. On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. A 44, 435302 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15

    Berry, M. V. Optical polarization evolution near a non-Hermitian degeneracy. J. Opt. 13, 115701 (2011)

    ADS  Article  Google Scholar 

  16. 16

    Berry, M. V. & Uzdin, R. Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon. J. Phys. A 44, 435303 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17

    Demange, G. & Graefe, E.-M. Signatures of three coalescing eigenfunctions. J. Phys. A 45, 025303 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    Gilary, I., Mailybaev, A. A. & Moiseyev, N. Time-asymmetric quantum-state-exchange mechanism. Phys. Rev. A 88, 010102 (2013)

    ADS  Article  Google Scholar 

  19. 19

    Graefe, E.-M., Mailybaev, A. A. & Moiseyev, N. Breakdown of adiabatic transfer of light in waveguides in the presence of absorption. Phys. Rev. A 88, 033842 (2013)

    ADS  Article  Google Scholar 

  20. 20

    Kaprálová-Žd’ánská, P. R. & Moiseyev, N. Helium in chirped laser fields as a time-asymmetric atomic switch. J. Chem. Phys. 141, 014307 (2014)

    ADS  Article  Google Scholar 

  21. 21

    Milburn, T. J. et al. General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A 92, 052124 (2015)

    ADS  Article  Google Scholar 

  22. 22

    Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    ADS  Article  Google Scholar 

  23. 23

    Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2012)

    ADS  Article  Google Scholar 

  25. 25

    Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Brandstetter, M. et al. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun. 5, 4034 (2014)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. 113, 6845–6850 (2016)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature http://www.dx.doi.org/10.1038/nature18604 (2016)

  32. 32

    Libisch, F., Rotter, S. & Burgdörfer, J. Coherent transport through graphene nanoribbons in the presence of edge disorder. New J. Phys. 14, 123006 (2012)

    ADS  Article  Google Scholar 

  33. 33

    Dietz, O., Kuhl, U., Stöckmann, H.-J., Makarov, N. M. & Izrailev, F. M. Microwave realization of quasi-one-dimensional systems with correlated disorder. Phys. Rev. B 83, 134203 (2011)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

J.D., A.G. and S.R. are supported by the Austrian Science Fund (FWF) through project numbers SFB IR-ON F25-14, SFB-NextLite F49-P10 and I 1142- N27 (GePartWave). The computational results presented were achieved in part using the Vienna Scientific Cluster. A.A.M. is supported by the National Council for Scientific and Technological Development (CNPq) grant number 302351/2015-9 and by the FAPERJ grant number E-26/210.874/2014. J.B. and U.K. acknowledge ANR project number I 1142-N27 (GePartWave). F.L. acknowledges support by the FWF through SFB-F41 VI-COM. T.J.M. and P.R. are supported by the FWF through DK CoQuS W 1210, SFB FOQUS F40, START (grant number Y 591-N16), and project OPSOQI (316607) of the WWTF. N.M. acknowledges I-Core (the Israeli Excellence Center ‘Circle of Light’) and the Israel Science Foundation (grant numbers 298/11 and 1530/15) for their financial support.

Author information

Affiliations

Authors

Contributions

J.D., A.A.M., A.G., F.L., T.J.M., P.R., N.M., and S.R. developed the theoretical framework and performed numerical simulations. J.B., J.D. and U.K. designed the experiment. J.B. and U.K. were responsible for the experimental implementation, the data acquisition and its evaluation. All authors contributed to the analysis, interpretation and discussion of the theoretical and experimental findings, as well as to the preparation of the manuscript. The project was jointly supervised by A.A.M. and S.R. (theory) and by U.K. (experiment).

Corresponding authors

Correspondence to Alexei A. Mailybaev or Ulrich Kuhl or Stefan Rotter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-12 and Supplementary References. (PDF 965 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doppler, J., Mailybaev, A., Böhm, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016). https://doi.org/10.1038/nature18605

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing