Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scalable and sustainable electrochemical allylic C–H oxidation


New methods and strategies for the direct functionalization of C–H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials1. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C–H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials2. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”3. Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium)2. These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C–H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C–H oxidation (demonstrated on 100 grams), enabling the adoption of this C–H oxidation strategy in large-scale industrial settings without substantial environmental impact.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Widely applied allylic oxidation.
Figure 2: Optimization of a sustainable allylic C–H oxidation.
Figure 3: Scope of the electrochemical allylic oxidation.
Figure 4: Practicality of the electrochemical method.
Figure 5: Proposed mechanism for electrochemical allylic oxidation.


  1. 1

    Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011)

    CAS  Article  Google Scholar 

  2. 2

    Weidmann, V. & Maison, W. Allylic oxidations of olefins to enones. Synthesis 45, 2201–2221 (2013)

    CAS  Article  Google Scholar 

  3. 3

    Nakamura, A. & Nakada, M. Allylic oxidations in natural product synthesis. Synthesis 45, 1421–1451 (2013)

    CAS  Article  Google Scholar 

  4. 4

    Sequeira, C. A. C. & Santos, D. M. F. Electrochemical routes for industrial synthesis. J. Braz. Chem. Soc. 20, 387–406 (2009)

    CAS  Article  Google Scholar 

  5. 5

    Degner, D. in Electrochemistry III (ed. Steckchan, E. ) 1–95 (Springer, 1988)

  6. 6

    Moeller, K. D. Synthetic applications of anodic electrochemistry. Tetrahedron 56, 9527–9554 (2000)

    CAS  Article  Google Scholar 

  7. 7

    Sperry, J. B. & Wright, D. L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chem. Soc. Rev. 35, 605–621 (2006)

    CAS  Article  Google Scholar 

  8. 8

    Yoshida, J.-i., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008)

    CAS  Article  Google Scholar 

  9. 9

    Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014)

    CAS  Article  Google Scholar 

  10. 10

    Gütz, C., Bänziger, M., Bucher, C., Galvão, T. R. & Waldvogel, S. R. Development and scale-up of the electrochemical dehalogenation for the synthesis of a key intermediate for NS5A inhibitors. Org. Process Res. Dev. 19, 1428–1433 (2015)

    Article  Google Scholar 

  11. 11

    Shono, T. & Kosaka, T. Organic synthesis by electrolysis III anodic allylic substitution. Tetrahedr. Lett. 9, 6207–6208 (1968)

    Article  Google Scholar 

  12. 12

    Shono, T. & Ikeda, A. Electroorganic chemistry X anodic allylic substitution. J. Am. Chem. Soc. 94, 7892–7898 (1972)

    CAS  Article  Google Scholar 

  13. 13

    Masui, M., Hara, S., Ueshima, T., Kawaguchi, T. & Ozaki, S. Anodic oxidation of compounds having benzylic or allylic carbon and α-carbon to hetero atom using N-hydroxyphthalimide as a mediator. Chem. Pharm. Bull. 31, 4209–4211 (1983)

    CAS  Article  Google Scholar 

  14. 14

    Masui, M., Hosomi, K., Tsuchida, K. & Ozaki, S. Electrochemical oxidations of olefins using N-hydroxyphthalimide as a mediator. Chem. Pharm. Bull. 33, 4798–4802 (1985)

    CAS  Article  Google Scholar 

  15. 15

    Ueda, C., Noyama, M., Ohmori, H. & Masui, M. Reactivity of phthalimide-N-oxyl: a kinetic study. Chem. Pharm. Bull. 35, 1372–1377 (1987)

    CAS  Article  Google Scholar 

  16. 16

    Foricher, J., Fürbringer, C. & Pfoertner, K. Process for the catalytic oxidation of isoprenoids having allylic groups. US patent 5,030,739 (1991)

  17. 17

    Ishii, Y. et al. A novel catalysis of N-hydroxyphthalimide in the oxidation of organic substrates by molecular oxygen. J. Org. Chem. 60, 3934–3935 (1995)

    CAS  Article  Google Scholar 

  18. 18

    Recupero, F. & Punta, C. Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide. Chem. Rev. 107, 3800–3842 (2007)

    CAS  Article  Google Scholar 

  19. 19

    Miller, R. A., Li, W. & Humphrey, G. R. A ruthenium catalyzed oxidation of steroidal alkenes to enones. Tetrahedr. Lett. 37, 3429–3432 (1996)

    CAS  Article  Google Scholar 

  20. 20

    Harre, M. et al. Some reaction safety aspects of ruthenium-catalyzed allylic oxidations of ∆-5-steroids in the pilot plant. Org. Process Res. Dev. 2, 100–104 (1998)

    CAS  Article  Google Scholar 

  21. 21

    Campbell, A. N. & Stahl, S. S. Overcoming the ‘oxidant problem’: strategies to use O2 as the oxidant in organometallic C–H oxidation reactions catalyzed by Pd (and Cu). Acc. Chem. Res. 45, 851–863 (2012)

    CAS  Article  Google Scholar 

  22. 22

    Osterberg, P. M. et al. Experimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industry. Org. Process Res. Dev. 19, 1537–1543 (2015)

    CAS  Article  Google Scholar 

  23. 23

    Mudryk, B., Zheng, B., Chen, K. & Eastgate, M. D. Development of a robust process for the preparation of high-quality dicyclopropylamine hydrochloride. Org. Process Res. Dev. 18, 520–527 (2014)

    CAS  Article  Google Scholar 

  24. 24

    Cai, Y., Koshino, N., Saha, B. & Espenson, J. H. Kinetics of self-decomposition and hydrogen atom transfer reactions of substitute phthalimide N-oxyl radicals in acetic acid. J. Org. Chem. 70, 238–243 (2005)

    CAS  Article  Google Scholar 

  25. 25

    Modzelewska, A., Sur, S., Kumar, S. K. & Khan, S. R. Sesquiterpenes: natural products that decrease cancer growth. Curr. Med. Chem. Anticancer Agents 5, 477–499 (2005)

    CAS  Article  Google Scholar 

  26. 26

    Michaudel, Q. et al. Improving physical properties via C–H oxidation: chemical and enzymatic approaches. Angew. Chem. Int. Ed. 53, 12091–12096 (2014)

    CAS  Article  Google Scholar 

  27. 27

    Marwah, P. & Lardy, H. A. Process for effecting allylic oxidation using dicarboxylic acid imides and chromium reagents. US patent 6,384,251 (2002)

  28. 28

    Anastas, P. T. & Warner, J. C. Green Chemistry: Theory and Practice (Oxford Univ. Press, 1998)

  29. 29

    Frey, D. A., Wu, N. & Moeller, K. D. Anodic electrochemistry and the use of a 6-volt lantern battery: a simple method for attempting electrochemically based synthetic transformations. Tetrahedr. Lett. 37, 8317–8320 (1996)

    CAS  Article  Google Scholar 

  30. 30

    Frankowski, K. J., Liu, R., Milligan, G. L., Moeller, K. D. & Aubé, J. Practical electrochemical anodic oxidation of polycyclic lactams for late stage functionalization. Angew. Chem. Int. Ed. 54, 10555–10558 (2015)

    CAS  Article  Google Scholar 

Download references


This work was supported by an NSF predoctoral fellowship (B.R.R.), National Institute of General Medical Sciences grant GM-097444, Asymchem and Bristol–Myers Squibb. We thank D.-H. Huang and L. Pasternack for assistance with NMR spectroscopy; A. L. Rheingold, C. E. Moore and M. A. Galella for X-ray crystallographic analysis; and D. G. Blackmond, O. Luca, T. Paschkewitz, Y. Ishihara and T. Razler for discussions.

Author information




E.J.H., B.R.R. and P.S.B. conceived this work; E.J.H., B.R.R., K.C., M.D.E. and P.S.B. designed the experiments; E.J.H. and B.R.R. conducted the experiments and analysed the data; Y.C. and J.T. performed the large-scale experiments; E.J.H., B.R.R., K.C., M.D.E. and P.S.B. wrote the manuscript.

Corresponding author

Correspondence to Phil S. Baran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Metrical parameters for the structure of 24 are available free of charge from the Cambridge Crystallographic Data Centre under reference number CCDC-1058554.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Data and additional references (see Contents for more details). (PDF 17780 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horn, E., Rosen, B., Chen, Y. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81 (2016).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing