Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quadrature squeezed photons from a two-level system

Abstract

Resonance fluorescence arises from the interaction of an optical field with a two-level system, and has played a fundamental role in the development of quantum optics and its applications. Despite its conceptual simplicity, it entails a wide range of intriguing phenomena, such as the Mollow-triplet emission spectrum1, photon antibunching2 and coherent photon emission3. One fundamental aspect of resonance fluorescence—squeezing in the form of reduced quantum fluctuations in the single photon stream from an atom in free space—was predicted more than 30 years ago4. However, the requirement to operate in the weak excitation regime, together with the combination of modest oscillator strength of atoms and low collection efficiencies, has continued to necessitate stringent experimental conditions for the observation of squeezing with atoms. Attempts to circumvent these issues had to sacrifice antibunching, owing to either stimulated forward scattering from atomic ensembles5,6 or multi-photon transitions inside optical cavities7,8. Here, we use an artificial atom with a large optical dipole enabling 100-fold improvement of the photon detection rate over the natural atom counterpart9 and reach the necessary conditions for the observation of quadrature squeezing in single resonance-fluorescence photons. By implementing phase-dependent homodyne intensity-correlation detection9,10,11, we demonstrate that the electric field quadrature variance of resonance fluorescence is three per cent below the fundamental limit set by vacuum fluctuations, while the photon statistics remain antibunched. The presence of squeezing and antibunching simultaneously is a fully non-classical outcome of the wave–particle duality of photons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homodyne intensity-correlation detection.
Figure 2: Phase-dependent quadrature variance of resonance fluorescence.
Figure 3: Excitation-power dependence of quadrature squeezing.

Similar content being viewed by others

References

  1. Schuda, F., Stroud, C. R. Jr & Hercher, M. Observation of the resonant Stark effect at optical frequencies. J. Phys. B 7, L198–L202 (1974)

    Article  ADS  CAS  Google Scholar 

  2. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977)

    Article  ADS  CAS  Google Scholar 

  3. Höffges, J. T., Baldauf, H. W., Lange, W. & Walther, H. Heterodyne measurement of the resonance fluorescence of a single ion. J. Mod. Opt. 44, 1999–2010 (1997)

    Article  ADS  Google Scholar 

  4. Walls, D. F. & Zoller, P. Reduced quantum fluctuations in resonance fluorescence. Phys. Rev. Lett. 47, 709–711 (1981)

    Article  ADS  CAS  Google Scholar 

  5. Heidmann, A. & Reynaud, S. Squeezing in the many atom resonance fluorescence emitted in the forward direction: application to photon noise reduction. J. Phys. (Paris) 46, 1937–1948 (1985)

    Article  CAS  Google Scholar 

  6. Lu, Z. H., Bali, S. & Thomas, J. E. Observation of squeezing in the phase-dependent fluorescence spectra of two-level atoms. Phys. Rev. Lett. 81, 3635–3638 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Raizen, M. G., Orozco, L. A., Xiao, M., Boyd, T. L. & Kimble, H. J. Squeezed-state generation by the normal modes of a coupled system. Phys. Rev. Lett. 59, 198–201 (1987)

    Article  ADS  CAS  Google Scholar 

  8. Ourjoumtsev, A. et al. Observation of squeezed light from one atom excited with two photons. Nature 474, 623–626 (2011)

    Article  ADS  CAS  Google Scholar 

  9. Gerber, S. et al. Intensity-field correlation of single-atom resonance fluorescence. Phys. Rev. Lett. 102, 183601 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Ou, Z. Y., Hong, C. K. & Mandel, L. Detection of squeezed states by cross correlation. Phys. Rev. A 36, 192–196 (1987)

    Article  ADS  CAS  Google Scholar 

  11. Vogel, W. Homodyne correlation measurements with weak local oscillators. Phys. Rev. A 51, 4160–4171 (1995)

    Article  ADS  CAS  Google Scholar 

  12. Yuen, H. P. Two-photon coherent states of the radiation field. Phys. Rev. A 13, 2226–2243 (1976)

    Article  ADS  Google Scholar 

  13. Teich, M. C. & Saleh, B. E. A. Squeezed states of light. Quantum Opt. 1, 153–199 (1989)

    Article  ADS  Google Scholar 

  14. Walls, D. F. Squeezed states of light. Nature 306, 141–146 (1983)

    Article  ADS  Google Scholar 

  15. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982)

    Article  ADS  Google Scholar 

  16. Goda, K. et al. A quantum-enhanced prototype gravitational-wave detector. Nature Phys. 4, 472–476 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Warburton, R. J. et al. Giant permanent dipole moments of excitons in semiconductor nanostructures. Phys. Rev. B 65, 113303 (2002)

    Article  ADS  Google Scholar 

  18. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Kim, J., Benson, O., Kan, H. & Yamamoto, Y. A single-photon turnstile device. Nature 397, 500–503 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007)

    Article  ADS  CAS  Google Scholar 

  21. Vamivakas, A. N., Zhao, Y., Lu, C.-Y. & Atatüre, M. Spin-resolved quantum-dot resonance fluorescence. Nature Phys. 5, 198–202 (2009)

    Article  ADS  Google Scholar 

  22. Flagg, E. B. et al. Resonantly driven coherent oscillations in a solid-state quantum emitter. Nature Phys. 5, 203–207 (2009)

    Article  ADS  CAS  Google Scholar 

  23. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Young, R. J. et al. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006)

    Article  ADS  Google Scholar 

  25. Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nature Photon. 8, 224–228 (2014)

    Article  ADS  Google Scholar 

  26. Matthiesen, C., Vamivakas, A. N. & Atatüre, M. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012)

    Article  ADS  Google Scholar 

  27. Matthiesen, C. et al. Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source. Nature Commun. 4, 1600 (2013)

    Article  ADS  Google Scholar 

  28. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nature Phys. 9, 570–575 (2013)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Stanley, M. J. et al. Dynamics of a mesoscopic nuclear spin ensemble interacting with an optically driven electron spin. Phys. Rev. B 90, 195305 (2014)

    Article  ADS  Google Scholar 

  30. Loudon, R. Squeezing in resonance fluorescence. Opt. Commun. 49, 24–28 (1984)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the University of Cambridge, the European Research Council ERC Consolidator Grant Agreement No. 617985 and the EU-FP7 Marie Curie Initial Training Network S3NANO. C.M. acknowledges Clare College Cambridge for financial support through a Junior Research Fellowship. We thank E. Clarke, M. Hugues and the EPSRC National Centre for III-V Technologies for the wafer and C. Baune, R. Moghadas Nia, W. Vogel, G. Rempe, H. J. Carmichael and A. Ourjoumtsev for discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.H.H.S. and M.A. devised the experiment, C.H.H.S., J.H., A.E.J., C.M. and C.L.G. performed the experiments, C.H.H.S., J.H. and C.L.G. developed the models and analysed the data, all authors contributed to the discussion of the results and the manuscript preparation. C.H.H.S. and C.M. processed the quantum dot device.

Corresponding author

Correspondence to Mete Atatüre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data comprising: 1 Theory of homodyne intensity autocorrelation measurement; 2 Wigner Functions; 3 Theoretical power dependence for Figure 3; and additional references. (PDF 108 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulte, C., Hansom, J., Jones, A. et al. Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015). https://doi.org/10.1038/nature14868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14868

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing