Letter | Published:

Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude

Nature volume 515, pages 394397 (20 November 2014) | Download Citation

Subjects

Abstract

The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons1,2,3,4. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity2,5,6. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude2,6,7,8,9,10,11,12,13. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 25° N and 60° N and the high-latitude natural vegetation between 50° N and 70° N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 per cent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001–2010 than in 1961–1970, suggesting that human land use and management contribute to seasonal changes in the CO2 exchange between the biosphere and the atmosphere.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Seasonal amplitude increase in atmospheric CO2 concentration at Mauna Loa, Hawaii, 1959–1982. J. Geophys. Res. D 90, 10529–10540 (1985)

  2. 2.

    , & Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149 (1996)

  3. 3.

    & Trends in Atmospheric Carbon Dioxide <> (2013)

  4. 4.

    , , & Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature 319, 195–199 (1986)

  5. 5.

    , & in The Changing Carbon Cycle, a Global Analysis (eds & ) 16–49 (Springer, 1986)

  6. 6.

    , , , & The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Glob. Biogeochem. Cycles 11, 535–560 (1997)

  7. 7.

    et al. Modelling the seasonal contribution of a CO2 fertilization effect of the terrestrial vegetation to the amplitude increase in atmospheric CO2 at Mauna Loa Observatory. Tellus B 41, 487–510 (1989)

  8. 8.

    , , , & Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997)

  9. 9.

    et al. The changing carbon cycle at Mauna Loa Observatory. Proc. Natl Acad. Sci. USA 104, 4249–4254 (2007)

  10. 10.

    et al. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Glob. Biogeochem. Cycles 15, 183–206 (2001)

  11. 11.

    et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Change Biol. 19, 2117–2132 (2013)

  12. 12.

    et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013)

  13. 13.

    et al. Benchmarking coupled climate-carbon models against long-term atmospheric CO2 measurements. Glob. Biogeochem. Cycles 24, (2010)

  14. 14.

    The Green Revolution: History, Impact and Future 1st edn (Studium Press, 2010)

  15. 15.

    et al. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Change Biol. 5, 1–15 (1999)

  16. 16.

    et al. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007)

  17. 17.

    et al. Global patterns in human consumption of net primary production. Nature 429, 870–873 (2004)

  18. 18.

    , , & Human appropriation of the products of photosynthesis. Bioscience 36, 368–373 (1986)

  19. 19.

    , , & CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964 (2003)

  20. 20.

    et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl Acad. Sci. USA 104, 18925–18930 (2007)

  21. 21.

    Glacial-interglacial atmospheric CO2 change—the glacial burial hypothesis. Adv. Atmos. Sci. 20, 677–693 (2003)

  22. 22.

    , & Terrestrial mechanisms of interannual CO2 variability. Glob. Biogeochem. Cycles 19, Gb1016, (2005)

  23. 23.

    , & Atmospheric carbon dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC data, 1974–1985. J. Geophys. Res. D 94, 8549–8565 (1989)

  24. 24.

    et al. The global carbon budget 1959–2011. Earth Syst. Sci. Data 5, 165–185 (2013)

  25. 25.

    , , & Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophys. Res. Lett. 32, L22709 (2005)

  26. 26.

    et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl Acad. Sci. USA 111, E1327–E1333 (2014)

  27. 27.

    , , & Horizontal displacement of carbon associated with agriculture and its impacts on atmospheric CO2. Glob. Biogeochem. Cycles 21, (2007)

  28. 28.

    et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmospheric Measurement Techniques 6, 2803–2823 (2013)

  29. 29.

    et al. Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT. Geophys. Res. Lett. 40, 2829–2833 (2013)

  30. 30.

    & Extension and integration of atmospheric carbon-dioxide data into a globally consistent measurement record. J. Geophys. Res. D 100, 11593–11610 (1995)

  31. 31.

    et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007)

  32. 32.

    et al. Including croplands in a global biosphere model: methodology and evaluation at specific sites. Earth Interact. 8 (2004)

  33. 33.

    & Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J. Environ. Qual. 32, 247–268 (2003)

  34. 34.

    Historical changes in harvest index and crop nitrogen accumulation. Crop Sci. 38, 638–643 (1998)

  35. 35.

    et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci. 116 (2011)

Download references

Acknowledgements

We thank all data providers, especially the NOAA CO2 and CarbonTracker team, and the Jena inversion team. M. Heimann suggested the flux data site comparison. This research was supported by NOAA (NA10OAR4310248 and NA09NES4400006), the NSF (AGS-1129088), and NASA (NNH12AU35I).

Author information

Affiliations

  1. Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742, USA

    • Ning Zeng
    • , Fang Zhao
    • , Eugenia Kalnay
    •  & Ross J. Salawitch
  2. Hydrospheric and Biospheric Sciences, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

    • George J. Collatz
  3. Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, Maryland 20740, USA

    • Tristram O. West
  4. Institute for Space Sciences, Freie Universität Berlin, 12165 Berlin, Germany

    • Luis Guanter

Authors

  1. Search for Ning Zeng in:

  2. Search for Fang Zhao in:

  3. Search for George J. Collatz in:

  4. Search for Eugenia Kalnay in:

  5. Search for Ross J. Salawitch in:

  6. Search for Tristram O. West in:

  7. Search for Luis Guanter in:

Contributions

N.Z. designed the research and all authors contributed to the ideas. N.Z. and F.Z. conducted the simulations and data analysis. L.G. analysed the TRENDY models and satellite SIF data. N.Z. wrote the paper with input from all others.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ning Zeng.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature13893

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.