Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Doppler spectroscopy as a path to the detection of Earth-like planets

Abstract

Doppler spectroscopy was the first technique used to reveal the existence of extrasolar planetary systems hosted by solar-type stars. Radial-velocity surveys led to the detection of a rich population of super-Earths and Neptune-type planets. The numerous detected systems revealed a remarkable diversity. Combining Doppler measurements with photometric observations of planets transiting their host stars further provides access to the planet bulk density, a first step towards comparative exoplanetology. The development of new high-precision spectrographs and space-based facilities will ultimately lead us to characterize rocky planets in the habitable zone of our close stellar neighbours.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Exoplanet discoveries as a function of time.
Figure 2: Rossiter–McLaughlin effect for probing the spin-orbit alignment of exoplanets.
Figure 3: Mass–density diagram for Neptunes and super-Earths.
Figure 4: Metallicity distribution of planet-hosting stars.

References

  1. Jeans, J. Problems of Cosmogony and Stellar Dynamics, p. 290 (Cambridge University Press, 1919).

    Google Scholar 

  2. Strand, K. 61 Cygni as a triple system. Publ. Astron. Soc. Pacif. 55, 29–32 (1943).

    ADS  Article  Google Scholar 

  3. Reuyl, D. & Holmberg, E. On the existence of a third component in the system 70 ophiuchi. Astrophys. J. 97, 41 (1943).

    ADS  Article  Google Scholar 

  4. Dick, S. J. in Bioastronomy – The Search for Extraterrestrial Life (eds J. Heidmann & M.J. Klein) 356–363 (Springer, 1991).

    Book  Google Scholar 

  5. Belorizky, D. Le Soleil, étoile variable. L'Astronomie 52, 359–361 (1938).

    ADS  Google Scholar 

  6. Struve, O. Proposal for a project of high-precision stellar radial velocity work. Observatory 72, 199–200 (1952).

    ADS  Google Scholar 

  7. Campbell, B. & Walker, G. A. H. in Stellar Radial Velocities: IAU Colloquium 88 (eds Davis Philip, A.G. & Latham, D.) 5–18 (L. Davis, 1985).

    Google Scholar 

  8. Walker, G. A. H. et al. A search for Jupiter-mass companions to nearby stars. Icarus 116, 359–375 (1995).

    ADS  Article  Google Scholar 

  9. Marcy, G. W. & Butler, R. P. in The Bottom of the Main Sequence and Beyond (ed. Tinney, C.) 98 (Springer, 1994).

    Google Scholar 

  10. Latham, D. W., Stefanik, R. P., Mazeh, T., Mayor, M. & Burki, G. The unseen companion of HD114762 – a probable brown dwarf. Nature 339, 38–40 (1989).

    ADS  Article  Google Scholar 

  11. Mordasini, C., Alibert, Y., Benz, W., Klahr, H. & Henning, T. Extrasolar planet population synthesis. IV. Correlations with disk metallicity, mass, and lifetime. Astron. Astrophys. 541, A97–A119 (2012). Exoplanet population synthesis models, which try to reproduce ensemble properties of exoplanets from protoplanetary disk evolution.

    ADS  Article  Google Scholar 

  12. Santos, N. et al. The HARPS search for southern extrasolar planets. XXV. Results from a metal-poor sample. Astron. Astrophys. 526, A112–A128 (2011).

    Article  Google Scholar 

  13. Santos, N. et al. SWEET-Cat: a catalogue of parameters for stars with exoplanets. I. New atmospheric parameters and masses for 48 stars with planets. Astron. Astrophys. 556, A150 (2013).

    Article  Google Scholar 

  14. Campbell, B., Walker, G. A. & Yang, S. A search for substellar companions to solar-type stars. Astrophys. J. 331, 902–921 (1988).

    CAS  ADS  Article  Google Scholar 

  15. Marcy, G. W. & Butler, R. P. Precision radial velocities with an iodine absorption cell. Publ. Astron. Soc. Pacif. 104, 270–277 (1992).

    ADS  Article  Google Scholar 

  16. Baranne, A. et al. ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. 119, 373–390 (1996).

    ADS  Google Scholar 

  17. Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995). This paper reports the discovery of 51 Peg b, the first confirmed exoplanet around a solar-type star.

    CAS  ADS  Article  Google Scholar 

  18. Boss, A. Proximity of Jupiter-like planets to low-mass stars. Science 267, 360–362 (1995).

    CAS  ADS  Article  PubMed  Google Scholar 

  19. Lin, D. N. C., Bodenheimer, P. & Richardson, D. C. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996). This was the first attempt at explaining the existence of hot Jupiters in terms of orbital migration within a protoplanetary disk.

    CAS  ADS  Article  Google Scholar 

  20. Goldreich, P. & Tremaine, S. Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980).

    ADS  MathSciNet  Article  Google Scholar 

  21. Lin, D. N. C. & Papaloizou, J. On the tidal interaction between protoplanets and the protoplanetary disk. III – orbital migration of protoplanets. Astrophys. J. 309, 846–857 (1986).

    ADS  Article  Google Scholar 

  22. Butler, R. P., Marcy, G. W., Williams, E., Hauser, A. & Shirts, P. Three new 51 Pegasi-type planets. Astrophys. J. 474, L115–L118 (1997). This article provided confirmation that 51 Peg b is not unique: hot Jupiters exist around many stars.

    ADS  Article  Google Scholar 

  23. Charbonneau, D., Brown, T. M., Latham, D. W. & Mayor, M. Detection of planetary transits across a sun-like star. Astrophys. J. 529, L45–L48 (2000). This article reports the first detection of an exoplanetary transit.

    CAS  ADS  PubMed  Article  Google Scholar 

  24. Henry, G. W., Marcy, G. W., Butler, R. P. & Vogt, S. S. A transiting 51 Peg-like planet. Astrophys. J. 529, L41–L44 (2000).

    CAS  ADS  PubMed  Article  Google Scholar 

  25. Brown, T. M., Charbonneau, D., Gillilland, R. L., Noyes, R. W. & Burrows, A. Hubble space telescope time-series photometry of the transiting planet of HD 209458. Astrophys. J. 552, 699–709 (2001).

    ADS  Article  Google Scholar 

  26. Brogi, M. et al. Detection of molecular absorption in the dayside of exoplanet 51 Pegasi b. Astrophys. J. 767, 27–36 (2013).

    ADS  Article  CAS  Google Scholar 

  27. Butler, R. P. et al. Attaining Doppler precision of 3 m/s. Publ. Astron. Soc. Pacif. 108, 500–509 (1996).

    ADS  Article  Google Scholar 

  28. Cochran, W. D. & Hatzes, A. P. in Precise Stellar Radial Velocities IAU Colloquium 170 (eds Hearnshaw, J. B. & Scarfe, C. D.) 113 (Astron. Soc. Pacif., 1999).

    Google Scholar 

  29. Queloz, D. et al. The CORALIE survey for southern extra-solar planets. I. A planet orbiting the star Gliese 86. Astron. Astrophys. 354, 99–102 (2000).

    ADS  Google Scholar 

  30. Endl, M., Kürster, M. & Els, S. The planet search program at the ESO Coudé Echelle spectrometer. I. Data modeling technique and radial velocity precision tests. Astron. Astrophys. 362, 585–594 (2000).

    ADS  Google Scholar 

  31. Tinney, C. G. et al. First results from the Anglo-Australian planet search: a brown dwarf candidate and a 51 Peg-like planet. Astrophys. J. 551, 507–511 (2001).

    ADS  Article  Google Scholar 

  32. Mayor, M. et al. Setting new standards with HARPS. Messenger 114, 20–24 (2003).

    ADS  Google Scholar 

  33. Dumusque, X. et al. An Earth-mass planet orbiting α Cen B. Nature 491, 207–211 (2012). This article reports the discovery of an Earth-mass planet on a short-period orbit around α Cen B, our closest stellar neighbour.

    CAS  ADS  PubMed  Article  Google Scholar 

  34. Udry, S. & Santos, N. C. Statistical properties of exoplanets. Annu. Rev. Astron. Astrophys. 45, 397–439 (2007).

    CAS  ADS  Article  Google Scholar 

  35. Mayor, M. et al. The HARPS search for southern extra-solar planets. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. Preprint at: http://arxiv.org/abs/1109.2497 (2011)

  36. Cumming, A. et al. The Keck planet search: detectability and the minimum mass and orbital period distribution of extrasolar planets. Publ. Astron. Soc. Pacif. 120, 531–554 (2008).

    ADS  Article  Google Scholar 

  37. Wright, J. T. et al. The frequency of hot Jupiters orbiting nearby solar-type stars. Astrophys. J. 753, 160–164 (2012).

    ADS  Article  CAS  Google Scholar 

  38. Wright, J. T. et al. Ten new and updated multiplanet systems and a survey of exoplanetary Systems. Astrophys. J. 693, 1084–1099 (2009).

    CAS  ADS  Article  Google Scholar 

  39. Correia, A. C. M. et al. The HARPS search for southern extra-solar planets. XVI. HD 45364, a pair of planets in a 3:2 mean motion resonance. Astron. Astrophys. 496, 521–526 (2009).

    CAS  ADS  Article  Google Scholar 

  40. Correia, A. C. M. et al. The HARPS search for southern extra-solar planets. XIX. Characterization and dynamics of the GJ 876 planetary system. Astron. Astrophys. 511, A21 (2010).

    Article  CAS  Google Scholar 

  41. Chatterjee, S., Ford, E. B., Matsumura, S. & Rasio, F. A. Dynamical outcomes of planet-planet scattering. Astrophys. J. 686, 580–602 (2008).

    CAS  ADS  Article  Google Scholar 

  42. Ford, E. B. & Rasio, F. A. Origins of eccentric extrasolar planets: testing the planet-planet scattering model. Astrophys. J. 686, 621–636 (2008).

    ADS  Article  Google Scholar 

  43. Takeda, G. & Rasio, F. A. High orbital eccentricities of extrasolar planets induced by the Kozai mechanism. Astrophys. J. 627, 1001–1010 (2005).

    ADS  Article  Google Scholar 

  44. Pollacco, D. L. et al. The WASP project and the SuperWASP cameras. Publ. Astron. Soc. Pacif. 118, 1407–1418 (2006).

    ADS  Article  Google Scholar 

  45. Bakos, G. et al. Wide-field millimagnitude photometry with the HAT: a tool for extrasolar planet detection. Publ. Astron. Soc. Pacif. 116, 266–277 (2004).

    ADS  Article  Google Scholar 

  46. Bodenheimer, P., Lin, D. N. C. & Mardling, R. A. On the tidal inflation of short-period extrasolar planets. Astrophys. J. 548, 466–472 (2001).

    ADS  Article  Google Scholar 

  47. Guillot, T. & Showman, A. P. Evolution of 51 Pegasus b-like planets. Astron. Astrophys. 385, 156–165 (2002).

    ADS  Article  Google Scholar 

  48. Burrows, A., Hubeny, I., Budaj, J. & Hubbard, W. B. Possible solutions to the radius anomalies of transiting giant planets. Astrophys. J. 661, 502–514 (2007).

    CAS  ADS  Article  Google Scholar 

  49. Chabrier, G. & Baraffe, I. Heat transport in giant (Exo)planets: a new perspective. Astrophys. J. 661, L81–L84 (2007).

    CAS  ADS  Article  Google Scholar 

  50. Batygin, K. & Stevenson, D. J. Inflating hot Jupiters with ohmic dissipation. Astrophys. J. 714, L238–L243 (2010).

    CAS  ADS  Article  Google Scholar 

  51. Triaud, A. H. M. J. et al. Spin-orbit angle measurements for six southern transiting planets. New insights into the dynamical origins of hot Jupiters. Astron. Astrophys. 524, A25 (2010).

    Article  Google Scholar 

  52. Winn, J. N., Fabrycky, D., Albrecht, S. & Johnson, J. A. Hot stars with hot Jupiters have high obliquities. Astrophys. J. 718, L145–L149 (2010).

    ADS  Article  Google Scholar 

  53. Rasio, F. A. & Ford, E. B. Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–956 (1996).

    CAS  ADS  Article  PubMed  Google Scholar 

  54. Holman, M., Touma, J. & Tremaine, S. Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B. Nature 386, 254–256 (1997).

    CAS  ADS  Article  Google Scholar 

  55. Crida, A. & Batygin, K. Spin-orbit angle distribution and the origin of (mis)aligned hot Jupiters. Astron. Astrophys. (in the press).

  56. Santos, N. C. et al. The HARPS survey for southern extra-solar planets. II. A 14 Earth-masses exoplanet around μ Arae. Astron. Astrophys. 426, L19–L23 (2004).

    ADS  Article  Google Scholar 

  57. Butler, R. P. et al. A Neptune-mass planet orbiting the nearby M dwarf GJ 436. Astrophys. J. 617, 580–588 (2004).

    CAS  ADS  Article  Google Scholar 

  58. McArthur, B. E. et al. Detection of a Neptune-mass planet in the ρ-1 Cancri system using the Hobby-Eberly telescope. Astrophys. J. 614, L81–L84 (2004).

    ADS  Article  Google Scholar 

  59. Lovis, C. et al. An extrasolar planetary system with three Neptune-mass planets. Nature 441, 305–309 (2006).

    CAS  ADS  Article  PubMed  Google Scholar 

  60. Lovis, C. et al. Towards the characterization of the hot Neptune/super-Earth population around nearby bright stars. Proc. IAU Symp. 253, 502–505 (2009).

    ADS  Google Scholar 

  61. Borucki, W. J. et al. Characteristics of planetary candidates observed by Kepler II. Analysis of the first four months of data. Astrophys. J. 736, 19 (2011).

    ADS  Article  Google Scholar 

  62. Bonfils, X. et al. The HARPS search for southern extra-solar planets. XXXI. The M-dwarf sample. Astron. Astrophys. 549, A109 (2013).

    Article  CAS  Google Scholar 

  63. Howard, A. W. et al. The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science 330, 653–655 (2010).

    CAS  ADS  Article  PubMed  Google Scholar 

  64. Terquem, C. & Papaloizou, J. C. B. Migration and the formation of systems of hot super-Earths and Neptunes. Astrophys. J. 654, 1110–1120 (2007).

    ADS  Article  Google Scholar 

  65. Chiang, E. & Laughlin, G. The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. Mon. Not. R. Astron. Soc. 431, 3444–3455 (2013).

    ADS  Article  Google Scholar 

  66. Dawson, R. I. & Fabrycky, D. C. Radial velocity planets de-aliased: a new, short period for super-Earth 55 Cnc e. Astrophys. J. 722, 937–953 (2010).

    ADS  Article  Google Scholar 

  67. Demory, B.-O. et al. Detection of a transit of the super-Earth 55 Cancri e with warm Spitzer. Astron. Astrophys. 533, A114 (2011).

    Article  Google Scholar 

  68. Winn, J. N. et al. A super-Earth transiting a naked-eye star. Astrophys. J. 737, L18 (2011).

    ADS  Article  Google Scholar 

  69. Howard, A. W. et al. The NASA-UC Eta-Earth program. III. A super-Earth orbiting HD 97658 and a Neptune-mass planet orbiting Gl 785. Astrophys. J. 730, 10 (2011).

    ADS  Article  CAS  Google Scholar 

  70. Dragomir, D. et al. MOST detects transits of HD 97658b, a warm, likely volatile-rich super-Earth. Astrophys. J. 772, L2 (2013).

    ADS  Article  Google Scholar 

  71. Charbonneau, D. et al. A super-Earth transiting a nearby low-mass star. Nature 462, 891–894 (2009).

    CAS  ADS  PubMed  Article  Google Scholar 

  72. Bonfils, X. et al. A hot Uranus transiting the nearby M dwarf GJ 3470. Detected with HARPS velocimetry. Captured in transit with TRAPPIST photometry. Astron. Astrophys. 546, A27 (2012).

    Article  Google Scholar 

  73. Gillon, M. et al. Detection of transits of the nearby hot Neptune GJ 436 b. Astron. Astrophys. 472, L13–L16 (2007).

    CAS  ADS  Article  Google Scholar 

  74. Bakos, G. A. et al. HAT-P-11b: A super-Neptune planet transiting a bright K star in the Kepler field. Astrophys. J. 710, 1724–1745 (2010).

    ADS  Article  Google Scholar 

  75. Marcy, G. W. et al. Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. Astrophys. J. 210, 20 (2014).

    Article  Google Scholar 

  76. Pepe, F. et al. The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around HD 20794, HD 85512, and HD 192310. Astron. Astrophys. 534, A58–A73 (2011). This paper reports the detection of several super-Earths with sub-metre per second Doppler signals, including one close to the habitable zone of a K dwarf.

    Article  Google Scholar 

  77. Selsis, F. et al. Habitable planets around the star Gliese 581? Astron. Astrophys. 476, 1373–1387 (2007).

    CAS  ADS  Article  Google Scholar 

  78. Delfosse, X. et al. The HARPS search for southern extra-solar planets. XXXIII. Super-Earths around the M-dwarf neighbors Gl 433 and Gl 667C. Astron. Astrophys. 553, A8 (2013).

    Article  CAS  Google Scholar 

  79. Tuomi, M. et al. Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307. Astron. Astrophys. 549, A48 (2013).

    Article  Google Scholar 

  80. Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013).

    ADS  Article  CAS  Google Scholar 

  81. Dumusque, X., Santos, N. C., Udry, S., Lovis, C. & Bonfils X. Planetary detection limits taking into account stellar noise. II. Effect of stellar spot groups on radial-velocities. Astron. Astrophys. 527, A82 (2011).

    ADS  Article  Google Scholar 

  82. Dumusque, X. et al. The HARPS search for southern extra-solar planets. XXX. Planetary systems around stars with solar-like magnetic cycles and short-term activity variation. Astron. Astrophys. 535, A55 (2011).

    Article  Google Scholar 

  83. Meunier, N. & Lagrange, A.-M. Using the Sun to estimate Earth-like planets detection capabilities. IV. Correcting for the convective component. Astron. Astrophys. 551, A101 (2013).

    ADS  Article  Google Scholar 

  84. Aigrain, S., Pont, F. & Zucker, S. A simple method to estimate radial velocity variations due to stellar activity using photometry. Mon. Not. R. Astron. Soc. 419, 3147–3158 (2012).

    ADS  Article  Google Scholar 

  85. Boisse, I., Bonfils, X. & Santos, N. C. SOAP. A tool for the fast computation of photometry and radial velocity induced by stellar spots. Astron. Astrophys. 545, A109 (2012).

    ADS  Article  Google Scholar 

  86. Torres, G. et al. Improved parameters for extrasolar transiting planets. Astrophys. J. 677, 1324–1342 (2008).

    CAS  ADS  Article  Google Scholar 

  87. Guillot, T. et al. A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent star. Astron. Astrophys. 453, L21–L24 (2006).

    CAS  ADS  Article  Google Scholar 

  88. Santos, N. C., Israelian, G. & Mayor, M. Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation. Astron. Astrophys. 415, 1153–1166 (2004). A large-scale study of the correlation between giant-planet occurrence and the metallicity of the host star.

    CAS  ADS  Article  Google Scholar 

  89. Fischer, D. A. & Valenti, J. The planet-metallicity correlation. Astrophys. J. 622, 1102–1117 (2005).

    CAS  ADS  Article  Google Scholar 

  90. Sousa, S. G. et al. Spectroscopic stellar parameters for 582 FGK stars in the HARPS volume-limited sample. Revising the metallicity-planet correlation. Astron. Astrophys. 533, A141 (2011)

    Article  Google Scholar 

  91. Buchhave, L. A. An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486, 375–377 (2012).

    CAS  ADS  Article  PubMed  Google Scholar 

  92. Adibekyan, V. Zh. et al. Overabundance of α-elements in exoplanet-hosting stars. Astron. Astrophys. 543, A89 (2012)

    Article  CAS  Google Scholar 

  93. Israelian, G. et al. Enhanced lithium depletion in Sun-like stars with orbiting planets. Nature 462, 189–191 (2009).

    CAS  ADS  Article  PubMed  Google Scholar 

  94. Baumann, P. et al. Lithium depletion in solar-like stars: no planet connection. Astron. Astrophys. 519, A87 (2010).

    Article  CAS  Google Scholar 

  95. Israelian, G. et al. Evidence for planet engulfment by the star HD82943. Nature 411, 163–166 (2001).

    CAS  ADS  Article  PubMed  Google Scholar 

  96. Reddy, B. et al. A search for 6Li in stars with planets. Mon. Not. R. Astron. Soc. 335, 1005–1016 (2002).

    CAS  ADS  Article  Google Scholar 

  97. Ramírez, I. et al. A possible signature of terrestrial planet formation in the chemical composition of solar analogs. Astron. Astrophys. 521, A33 (2010).

    Article  CAS  Google Scholar 

  98. González Hernández, J. I. et al. Searching for the signatures of terrestrial planets in solar analogs. Astrophys. J. 720, 1592–1602 (2010).

    ADS  Article  CAS  Google Scholar 

  99. Dawson, R. & Murray-Clay, R. A. Giant planets orbiting metal-rich stars show signatures of planet-planet interactions. Astrophys. J. 767, L24 (2013).

    ADS  Article  CAS  Google Scholar 

  100. Adibekyan, V. Zh. et al. Orbital and physical properties of planets and their hosts: new insights on planet formation and evolution. Astron. Astrophys. 560, A51 (2013).

    Article  Google Scholar 

  101. Butler, R. P. et al. Evidence for multiple companions to υ Andromedae. Astrophys. J. 526, 916–927 (1999).

    ADS  Article  Google Scholar 

  102. Mazeh, T. et al. The spectroscopic orbit of the planetary companion transiting HD 209458. Astrophys. J. 532, L55–L58 (2000).

    CAS  ADS  Article  PubMed  Google Scholar 

  103. Naef, D. et al. HD 80606 b, a planet on an extremely elongated orbit. Astron. Astrophys. 375, L27–L30 (2001).

    ADS  Article  Google Scholar 

  104. Moutou, C. et al. Photometric and spectroscopic detection of the primary transit of the 111-day-period planet HD 80 606 b. Astron. Astrophys. 498, L5–L8 (2009).

    CAS  ADS  Article  Google Scholar 

  105. Pepe, F. et al. The HARPS search for southern extra-solar planets. VIII. μ Arae, a system with four planets. Astron. Astrophys. 462, 769–776 (2007).

    ADS  Article  Google Scholar 

  106. Fischer, D. A. et al. Five planets orbiting 55 Cancri. Astrophys. J. 675, 790–801 (2008).

    CAS  ADS  Article  Google Scholar 

  107. Bouchy, F. et al. ELODIE metallicity-biased search for transiting hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733. Astron. Astrophys. 444, L15–L19 (2005).

    CAS  ADS  Article  Google Scholar 

  108. Sato, B. et al. The N2K Consortium. II. A transiting hot Saturn around HD 149026 with a large dense core. Astrophys. J. 633, 465–473 (2005).

    ADS  Article  Google Scholar 

  109. Udry, S. et al. The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 ME) in a 3-planet system. Astron. Astrophys. 469, L43–L47 (2007).

    ADS  Article  Google Scholar 

  110. Mayor, M. et al. The HARPS search for southern extra-solar planets. XVIII. An Earth-mass planet in the GJ 581 planetary system. Astron. Astrophys. 507, 487–494 (2009).

    ADS  Article  Google Scholar 

  111. Hébrard, G. et al. Misaligned spin-orbit in the XO-3 planetary system? Astron. Astrophys. 488, 763–770 (2008).

    ADS  Article  Google Scholar 

  112. Mayor, M. et al. The HARPS search for southern extra-solar planets. XIII. A planetary system with 3 super-Earths (4.2, 6.9, and 9.2 ME). Astron. Astrophys. 493, 639–644 (2009).

    CAS  ADS  Article  Google Scholar 

  113. Rivera, E. J. et al. The Lick-Carnegie exoplanet survey: a Uranus-mass fourth planet for GJ 876 in an extrasolar Laplace configuration. Astrophys. J. 719, 890–899 (2010).

    ADS  Article  Google Scholar 

  114. Queloz, D. et al. WASP-8b: a retrograde transiting planet in a multiple system. Astron. Astrophys. 517, L1 (2010).

    ADS  Article  CAS  Google Scholar 

  115. Lovis, C. et al. The HARPS search for southern extra-solar planets. XXVIII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems. Astron. Astrophys. 528, A112 (2011). This article reports the discovery of a densely populated system with up to seven planets and the study of its dynamical architecture.

    Article  Google Scholar 

  116. Triaud, A. H. M. J. et al. The Rossiter-McLaughlin effect of CoRoT-3b and HD 189733b. Astron. Astrophys. 506, 377–384 (2009).

    ADS  Article  Google Scholar 

  117. Zeng, L. & Sasselov, D. A detailed model grid for solid planets from 0.1 through 100 Earth masses. Publ. Astron. Soc. Pacif. 125, 227–239 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Triaud for his help in preparing Fig. 2. N.C.S. was supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the Investigador FCT contract reference IF/00169/2012 and POPH/FSE (EC) by FEDER funding through the program Programa Operacional de Factores de Competitividade-COMPETE. N.C.S. further acknowledges the support from the European Research Council/European Community under FP7 through Starting Grant agreement number 239953. M.M and C.L. acknowledge the support of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Mayor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mayor, M., Lovis, C. & Santos, N. Doppler spectroscopy as a path to the detection of Earth-like planets. Nature 513, 328–335 (2014). https://doi.org/10.1038/nature13780

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13780

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing