Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spitzer’s Solar System studies of asteroids, planets and the zodiacal cloud

Abstract

In its 16 years of scientific measurements, the Spitzer Space Telescope performed a number of groundbreaking and key infrared measurements of Solar System objects near and far. In this second of two Review Articles, we describe results from Spitzer observations of asteroids, dust rings and planets that provide new insight into the formation and evolution of our Solar System. The key Spitzer results presented here can be grouped into three broad classes: characterizing the physical properties of asteroids, notably including a large survey of near-Earth objects; detection and characterization of several dust/debris disks in the Solar System; and comprehensive characterization of ice giant (Uranus and Neptune) atmospheres. Many of these observations provide critical foundations for future infrared space-based observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Composite albedo and diameter results for the Spitzer NEO surveys (2,204 unique objects).
Fig. 2: Spitzer/IRS spectra of three Jovian D-type Trojans.
Fig. 3: Model of the Earth’s dust ring based on Spitzer’s measurements around the Earth’s orbit.
Fig. 4: Saturn’s Phoebe ring.
Fig. 5: Longitudinal variability of Uranus in December 2007.
Fig. 6: Disk integrated spectrum of Uranus.

Similar content being viewed by others

References

  1. Cruikshank, D. P., Werner, M. W. & Backman, D. E. SIRTF: capabilities for planetary science. Adv. Space Res. 12, 187–193 (1992).

    ADS  Google Scholar 

  2. Cruikshank, D. P. & Werner, M. W. in Planets Beyond the Solar System and the Next Generation of Space Missions (ed. Soderblom, D.) 223–244 (Astronomical Society of the Pacific, 1997).

  3. List of Spitzer Approved Programs (IRSA, 2020); https://go.nature.com/362LqBB

  4. Lisse, C. et al. Spitzer’s Solar System studies of comets, centaurs and Kuiper belt objects. Nat. Astron. https://doi.org/10.1038/s41550-020-01219-6 (2020).

  5. Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018).

    ADS  Google Scholar 

  6. Harris, A. W. A thermal model for near-Earth asteroids. Icarus 131, 291–301 (1998).

    ADS  Google Scholar 

  7. Harris, A. W. et al. ExploreNEOs. II: the accuracy of the warm Spitzer near-Earth object survey. Astron. J. 141, 75 (2011).

    ADS  Google Scholar 

  8. Trilling, D. E. et al. NEOSurvey 1: initial results from the warm Spitzer exploration science survey of near-Earth object properties. Astron. J. 152, 172 (2016).

    ADS  Google Scholar 

  9. Mommert, M. et al. ExploreNEOs. VIII. Dormant short-period comets in the near-Earth asteroid population. Astron. J. 150, 106 (2015).

    ADS  Google Scholar 

  10. Gustafsson, A. et al. Spitzer albedos of near-Earth objects. Astron. J. 158, 67 (2019).

    ADS  Google Scholar 

  11. Hora, J. L. et al. Infrared light curves of near-Earth objects. Astrophys. J. Suppl. 238, 22 (2018).

    ADS  Google Scholar 

  12. McNeill, A., Hora, J. L., Gustafsson, A., Trilling, D. E. & Mommert, M. Constraining the shape distribution of near-Earth objects from partial light curves. Astron. J. 157, 164 (2019).

    ADS  Google Scholar 

  13. Mommert, M. et al. The discovery of cometary activity in near-Earth asteroid (3552) Don Quixote. Astrophys. J. 781, 25 (2014).

    ADS  Google Scholar 

  14. Mommert, M. et al. Recurrent cometary activity in near-Earth object (3552) Don Quixote. Planet. Sci. J. 1, 12 (2020).

    Google Scholar 

  15. Mommert, M. et al. Constraining the physical properties of near-Earth object 2009 BD. Astrophys. J. Lett. 786, 148 (2014).

    Google Scholar 

  16. Mommert, M. et al. Physical properties of near-Earth asteroid 2011 MD. Astrophys. J. Lett. 789, L22 (2014).

    ADS  Google Scholar 

  17. Emery, J. P., Cruikshank, D. P. T. & van Cleve, J. Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: detection of fine-grained silicates. Icarus 182, 496–512 (2006).

    ADS  Google Scholar 

  18. DellaGiustina, D. N. et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nat. Astron. 3, 341–351 (2019).

    ADS  Google Scholar 

  19. Rozitis, B. et al. Asteroid (101955) Bennu’s weak boulders and thermally anomalous equator. Sci. Adv. (in the press).

  20. Campins, H. et al. Spitzer observations of spacecraft target 162173 (1999 JU3). Astron. Astrophys. 503, L17–L20 (2009).

    ADS  Google Scholar 

  21. Müller, T. G. et al. Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): searching for the object’s spin-axis orientation. Astron. Astrophys. 599, A103 (2017).

    Google Scholar 

  22. Sugita, S. et al. The geomorphology, color, and thermal properties of Ryugu: implications for parent-body processes. Science 364, eaaw0422 (2019).

    Google Scholar 

  23. Mueller, M. et al. ExploreNEOs. III. Physical characterization of 65 potential spacecraft target asteroids. Astron. J. 141, 109 (2011).

    ADS  Google Scholar 

  24. Harris, A. W., Mueller, M., Lisse, C. M. & Cheng, A. F. A survey of Karin cluster asteroids with the Spitzer Space Telescope. Icarus 199, 86–96 (2009).

    ADS  Google Scholar 

  25. Nesvorný, D. et al. Karin cluster formation by asteroid impact. Icarus 183, 296–311 (2006).

    ADS  Google Scholar 

  26. Licandro, J. et al. 5–14 μm Spitzer spectra of Themis family asteroids. Astron. Astrophys. 537, A73 (2012).

    Google Scholar 

  27. Landsman, Z. A. et al. The Veritas and Themis asteroid families: 5–14 μm spectra with the Spitzer Space Telescope. Icarus 269, 62–74 (2016).

    ADS  Google Scholar 

  28. Ryan, E. L. & Woodward, C. E. Albedos of small Hilda group asteroids as revealed by Spitzer. Astron. J. 141, 186 (2011).

    ADS  Google Scholar 

  29. Barucci, M. A. et al. Asteroids 2867 Steins and 21 Lutetia: surface composition from far infrared observations with the Spitzer Space Telescope. Astron. Astrophys. 477, 665–670 (2008).

    ADS  Google Scholar 

  30. Houck, J. R. et al. The Infrared Spectrograph (IRS) on the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 18–24 (2004).

    ADS  Google Scholar 

  31. Ryan, E. L. et al. The kilometer-sized main belt asteroid population revealed by Spitzer. Astron. Astrophys. 578, A42 (2015).

    Google Scholar 

  32. Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005).

    ADS  Google Scholar 

  33. Mueller, M. et al. Eclipsing binary Trojan asteroid Patroclus: thermal inertia from Spitzer observations. Icarus 205, 505–515 (2010).

    ADS  Google Scholar 

  34. Burns, J. A., Lamy, P. L. & Soter, S. Radiation forces on small particles in the Solar System. Icarus 40, 1–48 (1979).

    ADS  Google Scholar 

  35. Szalay, J. R. et al. The near-Sun dust environment: initial observations from the Parker Solar Probe. Astrophys. J. Suppl. 246, 27 (2020).

    ADS  Google Scholar 

  36. Dermott, S. F., Jayaraman, S., Xu, Y. L., Gustafson, B. A. S. & Liou, J. C. A circumsolar ring of asteroidal dust in resonant lock with the Earth. Nature 369, 719–723 (1994).

    ADS  Google Scholar 

  37. Reach, W. T. Structure of the Earth’s circumsolar dust ring. Icarus 208, 848–850 (2010).

    ADS  Google Scholar 

  38. Nesvorný, D. et al. Candidates for asteroid dust trails. Astron. J. 132, 582–595 (2006).

    ADS  Google Scholar 

  39. Nesvorný, D. et al. Origin of the near-ecliptic circumsolar dust band. Astrophys. J. Lett. 679, L143–L146 (2008).

    ADS  Google Scholar 

  40. Verbiscer, A., Skrutskie, M. F. & Hamilton, D. P. Saturn’s largest ring. Nature 461, 1098–1100 (2009).

    ADS  Google Scholar 

  41. Hamilton, D. P., Skrutskie, M. F., Verbiscer, A. J. & Masci, F. J. Small particles dominate Saturn’s Phoebe ring to surprisingly large distances. Nature 522, 185–187 (2015).

    ADS  Google Scholar 

  42. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astrophys. J. 140, 1868–1881 (2010).

    Google Scholar 

  43. Soter, S. Brightness of Iapetus. IAU Colloq. 28 (1974).

  44. Burns, J. A., Hamilton, D. P., Mignard, F. & Soter, S. in Astronomical Society of the Pacific Conference Series Vol. 104 (eds Gustafson, B. A. S. & Hanner, M. S.) 179–182 (ASP, 1996).

  45. Squyres, S. W. & Sagan, C. Albedo asymmetry of Iapetus. Nature 303, 782–785 (1983).

    ADS  Google Scholar 

  46. Tamayo, D., Burns, J. A., Hamilton, D. P. & Hedman, M. M. Finding the trigger to Iapetus’ odd global albedo pattern: dynamics of dust from Saturn’s irregular satellites. Icarus 215, 260–278 (2011).

    ADS  Google Scholar 

  47. Clark, R. N. et al. The surface composition of Iapetus: mapping results from Cassini VIMS. Icarus 218, 831–860 (2012).

    ADS  Google Scholar 

  48. Dalle Ore, C. M., Cruikshank, D. P. & Clark, R. N. Infrared spectroscopic characterization of the low-albedo materials on Iapetus. Icarus 221, 735–743 (2012).

    ADS  Google Scholar 

  49. Burgdorf, M., Orton, G., van Cleve, J., Meadows, V. & Houck, J. Detection of new hydrocarbons in Uranus’ atmosphere by infrared spectroscopy. Icarus 184, 634–637 (2006).

    ADS  Google Scholar 

  50. Orton, G. S. et al. Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 2. Determination of the mean composition of the upper troposphere and stratosphere. Icarus 243, 471–493 (2014).

    ADS  Google Scholar 

  51. Orton, G. S. et al. Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere. Icarus 243, 494–513 (2014).

    ADS  Google Scholar 

  52. Herbert, F. et al. The upper atmosphere of Uranus: EUV occultations observed by Voyager 2. J. Geophys. Res. 92, 15093–15109 (1987).

    ADS  Google Scholar 

  53. Stevens, M. H., Strobel, D. F. & Herbert, F. H. An analysis of the Voyager 2 Ultraviolet Spectrometer occultation data at Uranus: inferring heat sources and model atmospheres. Icarus 101, 45–63 (1993).

    ADS  Google Scholar 

  54. Orton, G. S. et al. The spectra of Uranus and Neptune at 8–14 and 17–23 μm. Icarus 70, 1–12 (1987).

    ADS  Google Scholar 

  55. Conrath, B. J. et al. Infrared observations of the Neptunian system. Science 246, 1454–1459 (1989).

    ADS  Google Scholar 

  56. Bezard, B., Romani, P. N., Conrath, B. J. & Maguire, W. C. Hydrocarbons in Neptune’s stratosphere from Voyager infrared observations. J. Geophys. Res. 96, 18961–18975 (1991).

    ADS  Google Scholar 

  57. Bishop, J. et al. in Neptune and Triton (ed. Cruikshank, D. P.) 427–487 (Univ. of Arizona Press, 1995).

  58. Marten, A. et al. First observations of CO and HCN on Neptune and Uranus at millimeter wavelengths and their implications for atmospheric chemistry. Astrophys. J. 406, 285–297 (1993).

    ADS  Google Scholar 

  59. Schulz, B. et al. Detection of C2H4 in Neptune from ISO/PHT-S observations. Astron. Astrophys. 350, L13–L17 (1999).

    ADS  Google Scholar 

  60. Bezard, B., Romani, P. N., Feuchtgruber, H. & Encrenaz, T. Detection of the methyl radical on Neptune. Astrophys. J. 515, 868–872 (1999).

    ADS  Google Scholar 

  61. Moses, J. I., Fletcher, L. N., Greathouse, T. K., Orton, G. S. & Hue, V. Seasonal stratospheric photochemistry on Uranus and Neptune. Icarus 307, 124–145 (2018).

    ADS  Google Scholar 

  62. Moses, J. I. et al. Photochemistry and diffusion in Jupiter’s stratosphere: constraints from ISO observations and comparisons with other giant planets. J. Geophys. Res. 110, E08001 (2005).

    ADS  Google Scholar 

  63. Meadows, V. S. et al. First Spitzer observations of Neptune: detection of new hydrocarbons. Icarus 197, 585–589 (2008).

    ADS  Google Scholar 

  64. Fletcher, L. N., Gustafsson, M. & Orton, G. S. Hydrogen dimers in giant-planet infrared spectra. Astrophys. J. Suppl. 235, 24 (2018).

    ADS  Google Scholar 

  65. Spitzer Heritage Archive (IRSA, 2020); https://irsa.ipac.caltech.edu/data/SPITZER/docs/spitzerdataarchives/

  66. Kelley, M. S. P., Woodward, C. E., Gehrz, R. D., Reach, W. T. & Harker, D. E. Mid-infrared spectra of comet nuclei. Icarus 284, 344–358 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Spitzer project, without which none of the science described above would have been possible. The dedication, competence and excellence with which the staff of the Spitzer Science Center carried out their mission, and in particular observations of Solar System objects, is greatly appreciated, and has produced a scientific foundation that will last for decades. This work is based on observations made with the Spitzer Space Telescope, which was operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA, in some cases through an award issued by JPL/Caltech. Y.F. acknowledges support of a SIRTF/Spitzer Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.E.T., C.L., D.P.C., Y.F., L.N.F., D.P.H., H.B.H., A.W.H., M.M., G.S.O., Y.J.P., W.R., M.S., N.R.G., and A.V. carried out scientific analysis and wrote parts of this paper. J.P.E. contributed scientific analysis that is presented in this paper.

Corresponding author

Correspondence to David E. Trilling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Nancy Chanover and Elisabetta Dotto for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trilling, D.E., Lisse, C., Cruikshank, D.P. et al. Spitzer’s Solar System studies of asteroids, planets and the zodiacal cloud. Nat Astron 4, 940–946 (2020). https://doi.org/10.1038/s41550-020-01221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-020-01221-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing