Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Influence of tumour micro-environment heterogeneity on therapeutic response

Subjects

Abstract

Tumour formation involves the co-evolution of neoplastic cells together with extracellular matrix, tumour vasculature and immune cells. Successful outgrowth of tumours and eventual metastasis is not determined solely by genetic alterations in tumour cells, but also by the fitness advantage such mutations confer in a given environment. As fitness is context dependent, evaluating tumours as complete organs, and not simply as masses of transformed epithelial cells, becomes paramount. The dynamic tumour topography varies drastically even throughout the same lesion. Heterologous cell types within tumours can actively influence therapeutic response and shape resistance.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Origins and influence of tumour heterogeneity.

References

  1. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    CAS  PubMed  Google Scholar 

  2. Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dotto, G. P., Weinberg, R. A. & Ariza, A. Malignant transformation of mouse primary keratinocytes by Harvey sarcoma virus and its modulation by surrounding normal cells. Proc. Natl Acad. Sci. USA 85, 6389–6393 (1988).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    CAS  PubMed  Google Scholar 

  5. Polanska, U. M. & Orimo, A. Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J. Cell. Physiol. 8, 1651–1657 (2013).

    Google Scholar 

  6. Rinn, J. L., Bondre, C., Gladstone, H. B., Brown, P. O. & Chang, H. Y. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2, e119 (2006).

    PubMed  PubMed Central  Google Scholar 

  7. Rudnick, J. A. et al. Functional heterogeneity of breast fibroblasts is defined by a prostaglandin secretory phenotype that promotes expansion of cancer-stem like cells. PLoS ONE 6, e24605 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000).

    CAS  PubMed  Google Scholar 

  9. Quante, M. et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19, 257–272 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamashita, M. et al. Role of stromal myofibroblasts in invasive breast cancer: stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer 19, 170–176 (2012).

    PubMed  Google Scholar 

  11. Fujita, H. et al. α-Smooth muscle actin expressing stroma promotes an aggressive tumor biology in pancreatic ductal adenocarcinoma. Pancreas 39, 1254–1262 (2010).

    CAS  PubMed  Google Scholar 

  12. Vihinen, P. & Kähäri, V.-M. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer 99, 157–166 (2002).

    CAS  PubMed  Google Scholar 

  13. Calle, E. E. & Kaaks, R. R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nature Rev. Cancer 4, 579–591 (2004).

    CAS  Google Scholar 

  14. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    ADS  CAS  PubMed  Google Scholar 

  15. Kalluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nature Rev. Cancer 3, 422–433 (2003).

    CAS  Google Scholar 

  16. Rosenberg, R. D. & Aird, W. C. Vascular-bed–specific hemostasis and hypercoagulable states. N. Engl. J. Med. 340, 1555–1564 (1999).

    CAS  PubMed  Google Scholar 

  17. Trédan, O., Galmarini, C. M., Patel, K. & Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst. 99, 1441–1454 (2007).

    PubMed  Google Scholar 

  18. Meert, A.-P. et al. The role of microvessel density on the survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br. J. Cancer 87, 694–701 (2002).

    PubMed  PubMed Central  Google Scholar 

  19. Des Guetz, G. et al. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br. J. Cancer 94, 1823–1832 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Uzzan, B., Nicolas, P., Cucherat, M. & Perret, G.-Y. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res. 64, 2941–2955 (2004).

    CAS  PubMed  Google Scholar 

  21. Hegde, P. S. et al. Predictive impact of circulating vascular endothelial growth factor in 4 phase III trials evaluating bevacizumab. Clin. Cancer Res. 19, 929–937 (2013).

    CAS  PubMed  Google Scholar 

  22. Fridman, W.-H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nature Rev. Cancer 12, 298–306 (2012).

    CAS  PubMed  Google Scholar 

  23. Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nature Med. 14, 28–36 (2008).

    CAS  PubMed  Google Scholar 

  24. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Rev. Cancer 12, 252–264 (2012).

    CAS  Google Scholar 

  25. Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).

    CAS  PubMed  Google Scholar 

  26. Shojaei, F. et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc. Natl Acad. Sci. USA 106, 6742–6747 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836–847 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bayne, L. J. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822–835 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nature Rev. Immunol. 11, 702–711 (2011).

    CAS  Google Scholar 

  30. Gabrilovich, D. I., Ostrand-Rosenberg, S. S. & Bronte, V. V. Coordinated regulation of myeloid cells by tumours. Nature Rev. Immunol. 12, 253–268 (2012).

    CAS  Google Scholar 

  31. Nelson, B. H. CD20+ B cells: the other tumor-infiltrating lymphocytes. J. Immunol. 185, 4977–4982 (2010).

    CAS  PubMed  Google Scholar 

  32. de Visser, K. E., Korets, L. V. & Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005).

    CAS  PubMed  Google Scholar 

  33. Ammirante, M., Luo, J.-L., Grivennikov, S., Nedospasov, S. & Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, F.-C. et al. Nf1-dependent tumors require a microenvironment containing Nf1+/−- and c-kit-dependent bone marrow. Cell 135, 437–448 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mantovani, A. & Sica, A. A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237 (2010).

    CAS  PubMed  Google Scholar 

  37. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nature Med. 14, 518–527 (2008).

    CAS  PubMed  Google Scholar 

  38. Tosolini, M. et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Hh2, Treg, Th17) in patients with colorectal cancer. Cancer Res. 71, 1263–1271 (2011).

    CAS  PubMed  Google Scholar 

  39. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nielsen, J. S. et al. CD20+ tumor-infiltrating lymphocytes have an atypical CD27 memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin. Cancer Res. 18, 3281–3292 (2012).

    CAS  PubMed  Google Scholar 

  41. Schmidt, M. et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res. 68, 5405–5413 (2008).

    CAS  PubMed  Google Scholar 

  42. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29, 3085–3096 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    CAS  PubMed  Google Scholar 

  45. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    ADS  CAS  PubMed  Google Scholar 

  46. Bean, J. et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl Acad. Sci. USA 104, 20932–20937 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nazarian, R. et al. Melanomas acquire resistance to B-RAF (V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meads, M. B., Gatenby, R. A. & Dalton, W. S. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nature Rev. Cancer 9, 665–674 (2009).

    CAS  Google Scholar 

  49. Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000).

    CAS  PubMed  Google Scholar 

  50. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ohuchida, K. et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 64, 3215–3222 (2004).

    CAS  PubMed  Google Scholar 

  52. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012). The authors of this paper used co-cultures of tumour cells with fibroblast and stromal cell lines to screen for targeted therapy resistance, and identified secreted HFG as a mediator of resistance to BRAF inhibition in melanoma.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wilson, T. R. et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487, 505–509 (2012). This article describes in vitro screening that illustrates the broad applicability of secreted growth factors as mediators of therapeutic resistance and identifies HFG as a mediator of therapeutic resistance to BRAF and HER2 inhibition.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Crawford, Y. et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15, 21–34 (2009).

    CAS  PubMed  Google Scholar 

  55. Sun, Y. et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nature Med. 18, 1359–1368 (2012). This article highlights the crucial effect that therapeutic treatment has on the tumour stroma, which can influence drug response and resistance.

    CAS  PubMed  Google Scholar 

  56. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    ADS  CAS  PubMed  Google Scholar 

  57. Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Van der Veldt, A. A. M. et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 21, 82–91 (2012).

    CAS  PubMed  Google Scholar 

  59. Gilbert, L. A. & Hemann, M. T. DNA damage-mediated induction of a chemoresistant niche. Cell 143, 355–366 (2010). The authors of this article illustrate in an animal model how tissue responses to chemotherapy can create unique environments in vivo that support minimum residual disease and eventual cancer relapse.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007). This paper describes a potential role for the vascular niche in harbouring cancer stem cells.

    CAS  PubMed  Google Scholar 

  61. Krishnamurthy, S. et al. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res. 70, 9969–9978 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lu, J. et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23, 171–185 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mao, Q. et al. A tumor hypoxic niche protects human colon cancer stem cells from chemotherapy. J. Cancer Res. Clin. Oncol. 139, 211–222 (2013).

    CAS  PubMed  Google Scholar 

  64. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnol. 25, 911–920 (2007). This article describes how infiltrating immunosuppressive cells can impede anti-VEGF therapeutic efficacy.

    CAS  Google Scholar 

  65. Phan, V. T. et al. Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment. Proc. Natl Acad. Sci. USA 110, 6079–6084 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, J. et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 73, 2782–2794 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Frederick, D. T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225–1231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Rev. Cancer 8, 299–308 (2008).

    CAS  Google Scholar 

  69. Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012). This report implicates treatment-induced inflammation as the cause of therapeutic resistance against an immunotherapy.

    ADS  CAS  PubMed  Google Scholar 

  70. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

    ADS  CAS  PubMed  Google Scholar 

  71. Michael, M. et al. Expression and prognostic significance of metalloproteinases and their tissue inhibitors in patients with small-cell lung cancer. J. Clin. Oncol. 17, 1802–1808 (1999).

    CAS  PubMed  Google Scholar 

  72. Theunissen, J.-W. & de Sauvage, F. J. Paracrine Hedgehog signaling in cancer. Cancer Res. 69, 6007–6010 (2009).

    CAS  PubMed  Google Scholar 

  73. Berlin, J. et al. A randomized phase II trial of vismodegib versus placebo with FOLFOX or FOLFIRI and bevacizumab in patients with previously untreated metastatic colorectal cancer. Clin. Cancer Res. 19, 258–267 (2013).

    CAS  PubMed  Google Scholar 

  74. Kaye, S. B. et al. A phase II, randomized, placebo-controlled study of vismodegib as maintenance therapy in patients with ovarian cancer in second or third complete remission. Clin. Cancer Res. 18, 6509–6518 (2012).

    CAS  PubMed  Google Scholar 

  75. Madden, J. I. Infinity Reports Update From Phase 2 Study of Saridegib Plus Gemcitabine in Patients with Metastatic Pancreatic Cancer http://phx.corporate-ir.net/phoenix.zhtml?c=121941&p=irol-newsArticle&ID=1653550&highlight= (Infinity Pharmaceuticals, 2012).

    Google Scholar 

  76. Catenacci, D. et al. A phase IB/randomized phase II study of gemcitabine (G) plus placebo (P) or vismodegib (V), a Hedgehog (Hh) pathway inhibitor, in patients (pts) with metastatic pancreatic cancer: Interim analysis of a University of Chicago phase II consortium study. J. Clin. Oncol. 30, (suppl.), abstr. 4022 (2012).

  77. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ferrara, N., Hillan, K. J., Gerber, H.-P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug Discov. 3, 391–400 (2004).

    CAS  Google Scholar 

  79. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    ADS  CAS  PubMed  Google Scholar 

  80. Hurwitz, H. I. et al. Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J. Clin. Oncol. 23, 3502–3508 (2005).

    CAS  PubMed  Google Scholar 

  81. Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Friedman, H. S. et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27, 4733–4740 (2009).

    CAS  PubMed  Google Scholar 

  83. Vredenburgh, J. J. et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25, 4722–4729 (2007).

    CAS  PubMed  Google Scholar 

  84. Perren, T. J. et al. A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med. 365, 2484–2496 (2011).

    CAS  PubMed  Google Scholar 

  85. Tewari, K. S. et al. Incorporation of bevacizumab in the treatment of recurrent and metastatic cervical cancer: A phase III randomized trial of the Gynecologic Oncology Group. J. Clin. Oncol. 31 (suppl.), abstr. 3 (2013)

    Google Scholar 

  86. Kindler, H. L. et al. Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J. Clin. Oncol. 23, 8033–8040 (2005).

    CAS  PubMed  Google Scholar 

  87. Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pàez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. Singh, M. et al. Anti-VEGF antibody therapy does not promote metastasis in genetically engineered mouse tumour models. J. Pathol. 227, 417–430 (2012).

    CAS  PubMed  Google Scholar 

  90. Miles, D. et al. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J. Clin. Oncol. 29, 83–88 (2011).

    CAS  PubMed  Google Scholar 

  91. Blagoev, K. B. et al. Sunitinib does not accelerate tumor growth in patients with metastatic renal cell carcinoma. Cell Rep. 3, 277–281 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chung, A. S. et al. Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. J. Pathol. 227, 404–416 (2012).

    CAS  PubMed  Google Scholar 

  93. de Groot, J. F. et al. Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol. 12, 233–242 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu, K. V. et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22, 21–35 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    CAS  PubMed  Google Scholar 

  97. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    CAS  PubMed  Google Scholar 

  99. Bargou, R. et al. Tumor regression in cancer patients by very low doses of a T-cell-engaging antibody. Science 321, 974–977 (2008).

    ADS  CAS  PubMed  Google Scholar 

  100. Brischwein, K. et al. Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J. Immunother. 30, 798–807 (2007).

    CAS  PubMed  Google Scholar 

  101. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lake, R. A. & Robinson, B. W. S. Immunotherapy and chemotherapy — a practical partnership. Nature Rev. Cancer 5, 397–405 (2005).

    CAS  Google Scholar 

  103. Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nature Rev. Immunol. 8, 59–73 (2008).

    CAS  Google Scholar 

  104. Ciampricotti, M., Hau, C.-S., Doornebal, C. W., Jonkers, J. & de Visser, K. E. Chemotherapy response of spontaneous mammary tumors is independent of the adaptive immune system. Nature Med. 18, 344–346 (2012).

    CAS  PubMed  Google Scholar 

  105. Zitvogel, L. & Kroemer, G. Reply to: Chemotherapy response of spontaneous mammary tumors is independent of the adaptive immune system. Nature Med. 18, 346 (2012). References 104 and 105 describe contradictory requirements for adaptive immunity in mediating chemotherapeutic responses in preclinical models of cancer.

    CAS  Google Scholar 

  106. Arlen, P. M. et al. A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin. Cancer Res. 12, 1260–1269 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hamzah, J. et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453, 410–414 (2008).

    ADS  CAS  PubMed  Google Scholar 

  108. Johansson, A., Hamzah, J. J., Payne, C. J. C. & Ganss, R. R. Tumor-targeted TNFα stabilizes tumor vessels and enhances active immunotherapy. Proc. Natl Acad. Sci. USA 109, 7841–7846 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shrimali, R. K. et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70, 6171–6180 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E. & Carbone, D. P. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5, 2963–2970 (1999).

    CAS  PubMed  Google Scholar 

  111. DeSilva, D. R. et al. Inhibition of mitogen-activated protein kinase kinase blocks T cell proliferation but does not induce or prevent anergy. J. Immunol. 160, 4175–4181 (1998).

    CAS  PubMed  Google Scholar 

  112. Boni, A. et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 70, 5213–5219 (2010).

    CAS  PubMed  Google Scholar 

  113. Singh, M. & Ferrara, N. Modeling and predicting clinical efficacy for drugs targeting the tumor milieu. Nature Biotechnol. 30, 648–657 (2012).

    CAS  Google Scholar 

  114. Yang, S. X. et al. Gene expression profile and angiogenic marker correlates with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer. Clin. Cancer Res. 14, 5893–5899 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lambrechts, D., Lenz, H.-J., de Haas, S., Carmeliet, P. & Scherer, S. J. Markers of response for the antiangiogenic agent bevacizumab. J. Clin. Oncol. 31, 1219–1230 (2013).

    CAS  PubMed  Google Scholar 

  116. Jubb, A. M. et al. Vascular phenotypes in primary non-small cell lung carcinomas and matched brain metastases. Br. J. Cancer 104, 1877–1881 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    PubMed  PubMed Central  Google Scholar 

  118. Bennouna, J. et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol. 14, 29–37 (2013).

    CAS  PubMed  Google Scholar 

  119. Cheever, M. A. et al. Translational Research Working Group developmental pathway for immune response modifiers. Clin. Cancer Res. 14, 5692–5699 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Deng, G., Lu, Y., Zlotnikov, G., Thor, A. D. & Smith, H. S. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274, 2057–2059 (1996).

    ADS  CAS  PubMed  Google Scholar 

  121. Patocs, A. et al. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N. Engl. J. Med. 357, 2543–2551 (2007).

    CAS  PubMed  Google Scholar 

  122. Qiu, W. et al. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nature Genet. 40, 650–655 (2008).

    CAS  PubMed  Google Scholar 

  123. Giantonio, B. J. et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 25, 1539–1544 (2007).

    CAS  PubMed  Google Scholar 

  124. Fiegl, H. et al. Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res. 66, 29–33 (2006).

    CAS  PubMed  Google Scholar 

  125. Hu, M. et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genet. 37, 899–905 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to P. Bishop, T. Junttila, K. Leong, J. Settleman, W. Ye, J. Low and S. Scales for their critical review of the manuscript. We also thank the reviewers for valuable insight and suggestions. Our sincere apologies go to authors whose work we are unable to cite due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic J. de Sauvage.

Ethics declarations

Competing interests

The authors are employees of Genentech Inc. and own shares in Roche.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Junttila, M., de Sauvage, F. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013). https://doi.org/10.1038/nature12626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12626

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing