Subjects

  • A Corrigendum to this article was published on 23 October 2013

Abstract

Complex gene–environment interactions are considered important in the development of obesity1. The composition of the gut microbiota can determine the efficacy of energy harvest from food2,3,4 and changes in dietary composition have been associated with changes in the composition of gut microbial populations5,6. The capacity to explore microbiota composition was markedly improved by the development of metagenomic approaches7,8, which have already allowed production of the first human gut microbial gene catalogue9 and stratifying individuals by their gut genomic profile into different enterotypes10, but the analyses were carried out mainly in non-intervention settings. To investigate the temporal relationships between food intake, gut microbiota and metabolic and inflammatory phenotypes, we conducted diet-induced weight-loss and weight-stabilization interventions in a study sample of 38 obese and 11 overweight individuals. Here we report that individuals with reduced microbial gene richness (40%) present more pronounced dys-metabolism and low-grade inflammation, as observed concomitantly in the accompanying paper11. Dietary intervention improves low gene richness and clinical phenotypes, but seems to be less efficient for inflammation variables in individuals with lower gene richness. Low gene richness may therefore have predictive potential for the efficacy of intervention.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

European Nucleotide Archive

Data deposits

The raw solid read data for all samples has been deposited in the European Bioinformatics Institute (EBI) European Nucleotide Archive (ENA) under the accession number ERP003699.

References

  1. 1.

    & Unraveling the genetics of human obesity. PLoS Genet. 2, e188 (2006)

  2. 2.

    et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004)

  3. 3.

    et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006)

  4. 4.

    , , & Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007)

  5. 5.

    , , & Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006)

  6. 6.

    et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 73, 1073–1078 (2007)

  7. 7.

    , & Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004)

  8. 8.

    The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet (The National Academies Press, 2007)

  9. 9.

    et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010)

  10. 10.

    et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011)

  11. 11.

    et al. Richness of human gut microbiome correlates with metabolic markers. Nature . (this issue)

  12. 12.

    et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009)

  13. 13.

    et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012)

  14. 14.

    & Social Network Analysis: Methods and Applications. (Cambridge Univ. Press, 1994)

  15. 15.

    et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011)

  16. 16.

    , , & Adipokines in inflammation and metabolic disease. Nature Rev. Immunol. 11, 85–97 (2011)

  17. 17.

    , & Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006)

  18. 18.

    , , , & Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008)

  19. 19.

    et al. Differential effects of macronutrient content in 2 energy-restricted diets on cardiovascular risk factors and adipose tissue cell size in moderately obese individuals: a randomized controlled trial. Am. J. Clin. Nutr. 95, 49–63 (2012)

  20. 20.

    et al. Five-week, low-glycemic index diet decreases total fat mass and improves plasma lipid profile in moderately overweight nondiabetic men. Diabetes Care 25, 822–828 (2002)

  21. 21.

    et al. Structural and inflammatory heterogeneity in subcutaneous adipose tissue: Relation with liver histopathology in morbid obesity. J. Hepatol. 56, 1152–1158 (2012)

  22. 22.

    et al. A lipid-parameter-based index for estimating insulin sensitivity and identifying insulin resistance in a healthy population. Diabetes Metab. 34, 457–463 (2008)

  23. 23.

    et al. Evaluation of insulin sensitivity with a new lipid-based index in non-diabetic postmenopausal overweight and obese women before and after a weight loss intervention. Eur. J. Endocrinol. 161, 51–56 (2009)

  24. 24.

    et al. Adipose angiotensinogen secretion, blood pressure, and AGT M235T polymorphism in obese patients. Obes. Res. 12, 556–561 (2004)

  25. 25.

    & Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 57, 289–300 (1995)

  26. 26.

    et al. METEOR, a platform for quantitative metagenomic profiling of complex ecosystems. Journées Ouvertes en Biologie, Informatique et Mathématiques (2010)

  27. 27.

    , & The cross-validated AUC for MCP-logistic regression with high-dimensional data. Stat. Methods Med. Res (28 November 2011)

  28. 28.

    A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423 (1995) 623–656 (1948)

  29. 29.

    Density Estimation for Statistics and Data Analysis (Chapman and Hall, 1986)

  30. 30.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2011)

Download references

Acknowledgements

We are grateful to O. Pedersen (Univ. Copenhagen) for helpful comments on this manuscript and to the MetaHIT consortium for providing the gene profiles of the Danish subjects used to test the ROC models in advance of publication and the DNA samples sequenced on the SOLiD platform for comparison with the Illumina platform used in the accompanying manuscript. We thank C. Baudoin, P. Ancel and V. Pelloux who contributed to the clinical investigation study; S. Fellahi and J.-P. Bastard for analyses of inflammatory markers; D. Bonnefont-Rousselot and R. Bittar for help with the analysis of plasma lipid profile. This work was supported by Agence Nationale de la Recherche (ANR MICRO-Obes, ANR, Nutra2sens, ANR-10-IAHU-05), the Metagenopolis grant ANR-11-DPBS-0001, KOT-Ceprodi (Florence Massiera), Danone Research (Damien Paineau) and the associations Fondacoeur, and Louis-Bonduelle. Additional funding came from the European Commission FP7 grant HEALTH-F4-2007-201052 and METACARDIS.

Author information

Author notes

    • Aurélie Cotillard
    • , Sean P. Kennedy
    • , Ling Chun Kong
    • , Edi Prifti
    •  & Nicolas Pons

    These authors contributed equally to this work.

Affiliations

  1. Institut National de la Santé et de la Recherche Médicale, U872, Nutriomique, Équipe 7, Centre de Recherches des Cordeliers, Paris 75006, France

    • Aurélie Cotillard
    • , Ling Chun Kong
    • , Edi Prifti
    • , Salwa Rizkalla
    • , Jean-Daniel Zucker
    •  & Karine Clément
  2. Université Pierre et Marie-Curie-Paris 6, Nutriomique, 15 rue de l’Ecole de Medecine, Paris 75006, France

    • Aurélie Cotillard
    • , Ling Chun Kong
    • , Edi Prifti
    • , Salwa Rizkalla
    • , Jean-Daniel Zucker
    •  & Karine Clément
  3. INRA, Institut National de la Recherche Agronomique, Metagenopolis, Jouy en Josas78350, France

    • Sean P. Kennedy
    • , Edi Prifti
    • , Nicolas Pons
    • , Emmanuelle Le Chatelier
    • , Mathieu Almeida
    • , Benoit Quinquis
    • , Florence Levenez
    • , Nathalie Galleron
    • , Jean-Michel Batto
    • , Joel Doré
    •  & Stanislav Dusko Ehrlich
  4. Institute of Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, CRNH-Ile de France, Pitié-Salpêtrière, Boulevard de l'Hopital, Paris 75013, France

    • Ling Chun Kong
    • , Sophie Gougis
    • , Salwa Rizkalla
    •  & Karine Clément
  5. INRA, Institut National de la Recherche Agronomique, UMR 1319 Micalis, Jouy en Josas 78350, France

    • Florence Levenez
    • , Jean-Michel Batto
    • , Pierre Renault
    •  & Joel Doré
  6. Institut de Recherche pour le Développement, IRD, UMI 209, UMMISCO, France Nord, Bondy F-93143, France

    • Jean-Daniel Zucker
  7. INRA, Institut National de la Recherche Agronomique, UMR 1319 Micalis, Jouy en Josas 78350, France.

    • Hervé Blottière
    • , Marion Leclerc
    • , Catherine Juste
    • , Tomas de Wouters
    • , Patricia Lepage
    • , Charlene Fouqueray
    • , Emmanuelle Maguin
    • , Maarten van de Guchte
    • , Alexandre Jamet
    • , Fouad Boumezbeur
    •  & Séverine Layec
  8. INRA, Institut National de la Recherche Agronomique, Metagenopolis, Jouy en Josas 78350, France.

    • Hervé Blottière
  9. Institute of Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris, CRNH-Ile de France, Pitié-Salpêtrière, Paris 75013, France.

    • Arnaud Basdevant
    • , Cornelieu Henegar
    • , Cindy Godard
    • , Marine Fondacci
    • , Alili Rohia
    •  & Froogh Hajduch
  10. Commissariat à l’Energie Atomique, Genoscope, Evry 91000, France.

  11. Institut National de la Recherche Agronomique, Mathématiques et Informatique Appliquées, Jouy en Josas 78350, France.

    • Jean-Pierre Gauchi
  12. Institut National de la Recherche Agronomique, Mathématique, Informatique et Génome, Jouy en Josas 78350, France.

    • Jean-François Gibrat
    • , Valentin Loux
    •  & Wilfrid Carré

Consortia

  1. ANR MicroObes consortium

    A list of authors and affiliations appears at the end of the paper.

  2. ANR MicroObes consortium members

Authors

  1. Search for Aurélie Cotillard in:

  2. Search for Sean P. Kennedy in:

  3. Search for Ling Chun Kong in:

  4. Search for Edi Prifti in:

  5. Search for Nicolas Pons in:

  6. Search for Emmanuelle Le Chatelier in:

  7. Search for Mathieu Almeida in:

  8. Search for Benoit Quinquis in:

  9. Search for Florence Levenez in:

  10. Search for Nathalie Galleron in:

  11. Search for Sophie Gougis in:

  12. Search for Salwa Rizkalla in:

  13. Search for Jean-Michel Batto in:

  14. Search for Pierre Renault in:

  15. Search for Joel Doré in:

  16. Search for Jean-Daniel Zucker in:

  17. Search for Karine Clément in:

  18. Search for Stanislav Dusko Ehrlich in:

Contributions

S.D.E., J.D. and K.C. designed the study; S.D.E., J.D., K.C. and P.R. managed the study; K.C. and S.R. designed the clinical research; S.R. and L.C.K. conducted the clinical research and clinical data management; A.C., S.R. and L.C.K. conducted clinical and dietary data analysis; S.G. gave dietary counselling to the patients and carried out analysis of dietary data; F.L. prepared the DNA for sequencing; S.K. managed DNA sequencing, which B.Q. and N.G. carried out; N.P. and J.-M.B. established the sequence analysis pipeline; A.C., J.-D.Z., E.P., N.P., E.L.C., M.A., J.-M.B., S.K. and S.D.E. carried out microbial data analysis; A.C., K.C., L.C.K. and S.D.E. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Karine Clément or Stanislav Dusko Ehrlich.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Figures 1-5, Supplementary Tables 1-6, 9-12, 14-15 and Supplementary Cluster Sheets.

Excel files

  1. 1.

    Supplementary Data

    This file contains Supplementary Table 7.

  2. 2.

    Supplementary Data

    This file contains Supplementary Table 8.

  3. 3.

    Supplementary Data

    This file contains Supplementary Table 13.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature12480

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.