Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage

An Erratum to this article was published on 18 September 2013


Anaerobic oxidation of methane (AOM) is critical for controlling the flux of methane from anoxic environments. AOM coupled to iron1, manganese1 and sulphate2 reduction have been demonstrated in consortia containing anaerobic methanotrophic (ANME) archaea. More recently it has been shown that the bacterium Candidatus ‘Methylomirabilis oxyfera’ can couple AOM to nitrite reduction through an intra-aerobic methane oxidation pathway3. Bioreactors capable of AOM coupled to denitrification have resulted in the enrichment of ‘M. oxyfera’ and a novel ANME lineage, ANME-2d4,5. However, as ‘M. oxyfera’ can independently couple AOM to denitrification, the role of ANME-2d in the process is unresolved. Here, a bioreactor fed with nitrate, ammonium and methane was dominated by a single ANME-2d population performing nitrate-driven AOM. Metagenomic, single-cell genomic and metatranscriptomic analyses combined with bioreactor performance and 13C- and 15N-labelling experiments show that ANME-2d is capable of independent AOM through reverse methanogenesis using nitrate as the terminal electron acceptor. Comparative analyses reveal that the genes for nitrate reduction were transferred laterally from a bacterial donor, suggesting selection for this novel process within ANME-2d. Nitrite produced by ANME-2d is reduced to dinitrogen gas through a syntrophic relationship with an anaerobic ammonium-oxidizing bacterium, effectively outcompeting ‘M. oxyfera’ in the system. We propose the name CandidatusMethanoperedens nitroreducens’ for the ANME-2d population and the family Candidatus ‘Methanoperedenaceae’ for the ANME-2d lineage. We predict that ‘M. nitroreducens’ and other members of the ‘Methanoperedenaceae’ have an important role in linking the global carbon and nitrogen cycles in anoxic environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Bioreactor performance data and microbial community composition.
Figure 2: Key carbon and nitrogen transformations in ‘Methanoperedens nitroreducens’.
Figure 3: Methane oxidation coupled to nitrate reduction in the AOM bioreactor.
Figure 4: Observed interactions between key populations in methane-fed bioreactors with differing nitrogen sources.

Accession codes

Primary accessions

Sequence Read Archive

Data deposits

Sequencing data are deposited at the NCBI Short Read Archive under accession numbers SRR925398, SRR925402 and SRR901892. Annotated assembled sequences were incorporated into the IMG system with the Taxon Object ID 2515154041.


  1. 1

    Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and Iron-Dependent Marine Methane Oxidation. Science 325, 184–187 (2009)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Hu, S. et al. Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environmental Microbiol. Rep. 1, 377–384 (2009)

    CAS  Article  Google Scholar 

  6. 6

    Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009)

    CAS  Article  Google Scholar 

  7. 7

    Reeburgh, W. S. Oceanic Methane Biogeochemistry. Chem. Rev. 107, 486–513 (2007)

    CAS  Article  Google Scholar 

  8. 8

    Hallam, S. J., Girguis, P. R., Preston, C. M., Richardson, P. M. & DeLong, E. F. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl. Environ. Microbiol. 69, 5483–5491 (2003)

    CAS  Article  Google Scholar 

  9. 9

    Meyerdierks, A. et al. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ. Microbiol. 12, 422–439 (2010)

    CAS  Article  Google Scholar 

  10. 10

    Stokke, R., Roalkvam, I., Lanzen, A., Haflidason, H. & Steen, I. H. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ. Microbiol. 14, 1333–1346 (2012)

    CAS  Article  Google Scholar 

  11. 11

    Heller, C., Hoppert, M. & Reitner, J. Immunological localization of coenzyme M reductase in anaerobic methane-oxidizing archaea of ANME 1 and ANME 2 type. Geomicrobiol. J. 25, 149–156 (2008)

    CAS  Article  Google Scholar 

  12. 12

    Scheller, S., Goenrich, M., Boecher, R., Thauer, R. K. & Jaun, B. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465, 606–608 (2010)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Hu, S., Zeng, R. J., Keller, J., Lant, P. A. & Yuan, Z. Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environmental Microbiol. Rep. 3, 315–319 (2011)

    CAS  Article  Google Scholar 

  15. 15

    Strous, M. et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790–794 (2006)

    ADS  Article  Google Scholar 

  16. 16

    Yilmaz, S., Haroon, M. F., Rabkin, B. A., Tyson, G. W. & Hugenholtz, P. Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations. ISME J. 4, 1352–1356 (2010)

    Article  Google Scholar 

  17. 17

    Cabello, P., Roldán, M. D. & Moreno-Vivián, C. Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150, 3527–3546 (2004)

    CAS  Article  Google Scholar 

  18. 18

    Trotsenko, Y. A. & Murrell, J. C. in Advances in Applied Microbiology Vol. 63 (eds Sariaslani, S., Laskin, A. I. & Geoffrey, M. G. ) 183–229 (Academic Press, 2008)

    Google Scholar 

  19. 19

    Nauhaus, K., Treude, T., Boetius, A. & Krüger, M. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ. Microbiol. 7, 98–106 (2005)

    CAS  Article  Google Scholar 

  20. 20

    Orcutt, B., Samarkin, V., Boetius, A. & Joye, S. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environ. Microbiol. 10, 1108–1117 (2008)

    CAS  Article  Google Scholar 

  21. 21

    Dekas, A. E., Poretsky, R. S. & Orphan, V. J. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326, 422–426 (2009)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Smith, M. R. Reversal of 2-bromoethanesulfonate inhibition of methanogenesis in Methanosarcina sp. J. Bacteriol. 156, 516–523 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Caldwell, S. L. et al. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ. Sci. Technol. 42, 6791–6799 (2008)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Luesken, F. A. et al. Simultaneous nitrite-dependent anaerobic methane and ammonium oxidation processes. Appl. Environ. Microbiol. 77, 6802–6807 (2011)

    CAS  Article  Google Scholar 

  25. 25

    Brooks, P. D., Stark, J. M., McInteer, B. B. & Preston, T. Diffusion method to prepare soil extracts for automated nitrogen-15 analysis. Soil Sci. Soc. Am. J. 53, 1707–1711 (1989)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Kunin, V., Engelbrektson, A., Ochman, H. & Hugenholtz, P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12, 118–123 (2010)

    CAS  Article  Google Scholar 

  27. 27

    Glöckner, F. O. et al. An in situ hybridization protocol for detection and identification of planktonic bacteria. System. Applied Microbiol. 19, 403–406 (1996)

    Article  Google Scholar 

  28. 28

    Dick, G. J. et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10, R85 (2009)

    Article  Google Scholar 

  29. 29

    Markowitz, V. M. et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25, 2271–2278 (2009)

    CAS  Article  Google Scholar 

  30. 30

    Stewart, F. J., Ottesen, E. A. & DeLong, E. F. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J. 4, 896–907 (2010)

    CAS  Article  Google Scholar 

  31. 31

    Schmid, M., Schmitz-Esser, S., Jetten, M. & Wagner, M. 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ. Microbiol. 3, 450–459 (2001)

    CAS  Article  Google Scholar 

  32. 32

    Daims, H., Brühl, A., Amann, R., Schleifer, K.-H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Systematic Applied Microbiol. 22, 434–444 (1999)

    CAS  Article  Google Scholar 

  33. 33

    Daims, H., Lücker, S. & Wagner, M. Daime, a novel image analysis program for microbial ecology and biofilm research. Environ. Microbiol. 8, 200–213 (2006)

    CAS  Article  Google Scholar 

  34. 34

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Meth. 7, 335–336 (2010)

    CAS  Article  Google Scholar 

  35. 35

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012)

    CAS  Article  Google Scholar 

  36. 36

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011)

    CAS  Article  Google Scholar 

  37. 37

    Bragg, L., Stone, G., Imelfort, M., Hugenholtz, P. & Tyson, G. W. Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nature Meth. 9, 425–426 (2012)

    CAS  Article  Google Scholar 

  38. 38

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010)

    CAS  Article  Google Scholar 

  39. 39

    Wu, M. & Scott, A. J. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28, 1033–1034 (2012)

    CAS  Article  Google Scholar 

  40. 40

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009)

    CAS  Article  Google Scholar 

  41. 41

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)

    Article  Google Scholar 

  42. 42

    Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004)

    CAS  Article  Google Scholar 

  43. 43

    DeSantis, T. Z. et al. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res. 34, W394–W399 (2006)

    CAS  Article  Google Scholar 

  44. 44

    Eddy, S. R. Accelerated profile HMM searches. PLOS Comput. Biol. 7, e1002195 (2011)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  45. 45

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010)

    ADS  Article  Google Scholar 

  46. 46

    Shi, Y., Tyson, G. W. & DeLong, E. F. Metatranscriptomics reveals unique microbial small RNAs in the ocean/'s water column. Nature 459, 266–269 (2009)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Kuenen, J. G. Anammox bacteria: from discovery to application. Nature Rev. Microbiol. 6, 320–326 (2008)

    CAS  Article  Google Scholar 

Download references


We thank the ACE sequencing team; M. Butler, F. May and S. Low for their help with the 454 pyrosequencing, Illumina and Ion Torrent sequencing and the DOE Joint Genome Institute for single-cell sequencing. We also thank P. Lu for assistance with bioreactor operation, R. Zeng and P. Lant for their contribution to the development of initial bioreactors, B. Keller, J. Li, Y. Rui and Y. Wang for chemical and isotopic analyses, and D. Willner for assistance with genomic analysis. We are grateful to J. Euzéby for etymological advice. This work is supported by the Australian Research Council (ARC) through projects DP0666762 and DP0987204 and strategic funds from the Australian Centre for Ecogenomics. G.W.T. is supported by an ARC Queen Elizabeth II Fellowship (DP1093175). P.H. is supported by an ARC Discovery Outstanding Researcher Award (DP120103498). Y.S. is supported by the China Scholarship Council.

Author information




S.H. and Y.S. enriched the microorganisms in the parent bioreactor and performed batch and isotope labelling tests. S.H., Y.S., J.K. and Z.Y. performed the process data analysis. M.F.H. performed the sampling, preservation and nucleic acid extractions. M.F.H. prepared samples for single-cell genomics, metagenomic and metatranscriptomic sequencing. M.F.H. and G.W.T. performed the microbial community analysis. M.I. developed the bioinformatic tools. M.F.H., M.I., P.H. and G.W.T. performed the bioinformatics analyses. M.F.H., S.H., Z.Y., P.H., G.W.T. wrote the manuscript in consultation with all other authors.

Corresponding authors

Correspondence to Zhiguo Yuan or Gene W. Tyson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-3, 5, 6 and 10; full legends for Supplementary Tables 4, 7, 8 and 9 (see separate excel data files for tables); Supplementary Figures 1-14 and Supplementary References. (PDF 3183 kb)

Supplementary Data

This file contains Supplementary Table 4 (see Supplementary Information file for full legend). (XLS 379 kb)

Supplementary Data

This file contains Supplementary Table 7 (see Supplementary Information file for full legend). (XLS 545 kb)

Supplementary Data

The file contains Supplementary Table 8 (see Supplementary Information file for full legend). (XLS 27 kb)

Supplementary Data

The file contains Supplementary Table 9 (see Supplementary Information file for full legend). (XLS 27 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haroon, M., Hu, S., Shi, Y. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing