Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mcr-dependent methanogenesis in Archaeoglobaceae enriched from a terrestrial hot spring

Abstract

The preeminent source of biological methane on Earth is methyl coenzyme M reductase (Mcr)-dependent archaeal methanogenesis. A growing body of evidence suggests a diversity of archaea possess Mcr, although experimental validation of hypothesized methane metabolisms has been missing. Here, we provide evidence of a functional Mcr-based methanogenesis pathway in a novel member of the family Archaeoglobaceae, designated Methanoglobus nevadensis, which we enriched from a terrestrial hot spring on the polysaccharide xyloglucan. Our incubation assays demonstrate methane production that is highly sensitive to the Mcr inhibitor bromoethanesulfonate, stimulated by xyloglucan and xyloglucan-derived sugars, concomitant with the consumption of molecular hydrogen, and causing a deuterium fractionation in methane characteristic of hydrogenotrophic and methylotrophic methanogens. Combined with the recovery and analysis of a high-quality M. nevadensis metagenome-assembled genome encoding a divergent Mcr and diverse potential electron and carbon transfer pathways, our observations suggest methanogenesis in M. nevadensis occurs via Mcr and is fueled by the consumption of cross-fed byproducts of xyloglucan fermentation mediated by other community members. Phylogenetic analysis shows close affiliation of the M. nevadensis Mcr with those from Korarchaeota, Nezhaarchaeota, Verstraetearchaeota, and other Archaeoglobales that are divergent from well-characterized Mcr. We propose these archaea likely also use functional Mcr complexes to generate methane on the basis of our experimental validation in M. nevadensis. Thus, divergent Mcr-encoding archaea may be underestimated sources of biological methane in terrestrial and marine hydrothermal environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Community composition and methane production data of the xyloglucan-degrading culture.
Fig. 2: Enrichment of M. nevadensis among multiple McrA-encoding taxa in GBS.
Fig. 3: Possible methanogenesis pathways in M. nevadensis.
Fig. 4: Headspace H2 concentration in triplicate cultures between day 12 and 20.
Fig. 5: Isotopic composition of in-situ and culture methane gas in a δ13C-δ 2H space.
Fig. 6: Schematic illustration of speculated modes of methane formation by M. nevadensis in the xyloglucan enrichment culture.

Similar content being viewed by others

Data availability

Metagenome and 16S rRNA gene sequence data were deposited in the NCBI database as Bioproject PRJNA956542.

References

  1. Pavlov AA, Brown LL, Kasting JF. UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J Geophys Res Atmos. 2001;106:23267–87.

    Article  CAS  Google Scholar 

  2. Zahnle KJ. Earth’s earliest atmosphere. Elements. 2006;2:217–22.

    Article  CAS  Google Scholar 

  3. Arias P, Bellouin N, Coppola E, Jones R, Krinner G, Marotzke J, et al. Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC). 2021; 2391.

  4. Ellefson WL, Wolfe RS. Role of component C in the methylreductase system of Methanobacterium. J Biol Chem. 1980;255:8388–9.

    Article  CAS  PubMed  Google Scholar 

  5. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science. 1997;278:1457–62.

    Article  CAS  PubMed  Google Scholar 

  6. Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science. 2004;305:1457–62.

    Article  CAS  PubMed  Google Scholar 

  7. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science. 2015;350:434–8.

    Article  CAS  PubMed  Google Scholar 

  8. Borrel G, Adam PS, McKay LJ, Chen LX, Sierra-García IN, Sieber CM, et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nature Microbiol. 2019;4:603–13.

    Article  CAS  Google Scholar 

  9. McKay LJ, Hatzenpichler R, Inskeep WP, Fields MW. Occurrence and expression of novel methyl-coenzyme Mreductase gene (mcrA) variants in hot spring sediments. Sci. Rep. 2017;7:7252.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lynes MM, Krukenberg V, Jay ZJ, Kohtz AJ, Gobrogge CA, Spietz RL, et al. Diversity and function of methyl-coenzyme M reductase-encoding archaea in Yellowstone hot springs revealed by metagenomics and mesocosm experiments. ISME communications. 2023;3:22.

    Article  Google Scholar 

  11. Hua Z-S, Wang Y-L, Evans PN, Qu Y-N, Goh KM, Rao Y-Z, et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat Commun. 2019;10:4574–85.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen S-C, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M, Said N, et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature. 2019;568:108–11.

    Article  CAS  PubMed  Google Scholar 

  13. Hahn CJ, Laso-Pérez R, Vulcano F, Vaziourakis K-M, Stokke R, Steen IH, et al. ‘Candidatus Ethanoperedens,’ a thermophilic genus of Archaea mediating the anaerobic oxidation of ethane. mBio. 2020;11:e00600–e00620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature. 2016;539:396–401.

    Article  PubMed  Google Scholar 

  15. Boyd JA, Jungbluth SP, Leu AO, Evans PN, Woodcroft BJ, Chadwick GL, et al. Divergent methyl-coenzyme M reductase genes in a deep-subseafloor Archaeoglobi. ISME J. 2019;13:1269–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huber H, Jannasch H, Rachel R, Fuchs T, Stetter KO. Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst Appl Microbiol. 1997;20:374–80.

    Article  CAS  Google Scholar 

  17. Mori K, Maruyama A, Urabe T, Suzuki K-I, Hanada S. Archaeoglobus infectus sp. nov., a novel thermophilic, chemolithoheterotrophic archaeon isolated from a deep-sea rock collected at Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean. Int J Syst Evol Microbiol. 2008;58:810–6.

    Article  CAS  PubMed  Google Scholar 

  18. Beeder J, Nilsen RK, Rosnes JT, Torsvik T, Lien T. Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol. 1994;60:1227–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stetter KO, Lauerer G, Thomm M, Neuner A. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of Archaebacteria. Science. 1987;236:822–4.

    Article  CAS  PubMed  Google Scholar 

  20. Bapteste É, Brochier C, Boucher Y. Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea. 2005;1:353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Y-F, Chen J, Zaramela LS, Wang L-Y, Mbadinga SM, Hou Z-W, et al. Genomic and transcriptomic evidence supports methane metabolism in Archeoglobi. mSystems. 2020;5:e00651–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, et al. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA. 2008;105:10949–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hedlund BP, Thomas SC, Dodsworth JA, Zhang CL. Life in high-temperature environments. In: Manual of environmental microbiology. Washington, DC; ASM Press, 2015. p. 4.3.4–1–15.

  24. Cole JK, Peacock JP, Dodsworth JA, Williams AJ, Thompson DB, Dong H, et al. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J. 2013;7:718–29.

    Article  CAS  PubMed  Google Scholar 

  25. Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP. Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles. 2009;13:447–59.

    Article  CAS  PubMed  Google Scholar 

  26. Vick TJ, Dodsworth JA, Costa KC, Shock EL, Hedlund BP. Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology. 2010;8:140–54.

    Article  CAS  PubMed  Google Scholar 

  27. Peacock JP, Cole JK, Murugapiran SK, Dodsworth JA, Fisher JC, Moser DP, et al. Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment. PLoS ONE. 2013;8:e59927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buessecker S, Palmer M, Lai D, Dimapilis J, Mayali X, Mosier D, et al. An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea. Nat Commun. 2022;13:3773–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanada S, Hiraishi A, Shimada K, Matsuura K. Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Evol Microbiol. 1995;45:676–81.

    CAS  Google Scholar 

  30. Kozich JJ, Westcott SL, Baker NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina Sequencing Platform. Appl Environ Microbiol. 2013;79:5112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics. 2016;32:1009–15.

    Article  CAS  PubMed  Google Scholar 

  34. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol. 2018;36:566–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol. 2021;6:3–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.

    Article  CAS  Google Scholar 

  39. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.

    Article  CAS  PubMed  Google Scholar 

  40. Boyd JA, Woodcroft BJ, Tyson GW. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 2018;46:e59.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Trifinopoulos J, Nguyen L-T, Haeseler von A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sander SP, Friedl RR, Barker JR, Golden DM, Kurylo MJ, Wine PH, et al. Chemical kinetics and photochemical data for use in Atmospheric Studies, Evaluation Number 1, 2009.

  44. Yarnes C. δ13C and δ2H measurement of methane from ecological and geological sources by gas chromatography/combustion/pyrolysis isotope‐ratio mass spectrometry. Rapid Commun Mass Spectrom. 2013;27:1036–44.

    Article  CAS  PubMed  Google Scholar 

  45. Taylor CD, McBride BC, Wolfe RS, Bryant MP. Coenzyme M, Essential for growth of a rumen strain of Methanobacterium ruminantium. J Bacteriol. 1974;120:974–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, et al. Methane production from coal by a single methanogen. Science. 2016;354:222–5.

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Wegener G, Hou J, Wang F, Xiao X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol. 2019;4:595–602.

    Article  CAS  PubMed  Google Scholar 

  48. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Leeuwenhoek. 2017;110:1281–6.

    Article  CAS  PubMed  Google Scholar 

  49. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114–22.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hedlund BP, Chuvochina M, Hugenholtz P, Konstantinidis KT, Murray AE, Palmer M, et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat Microbiol. 2022;7:1702–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Brüggemann H, Falinski F, Deppenmeier U. Structure of the F420H2:quinone oxidoreductase of Archaeoglobus fulgidus. Eur J Biochem. 2000;267:5810–4.

    Article  PubMed  Google Scholar 

  52. Welte C, Deppenmeier U. Membrane-bound electron transport in Methanosaeta thermophila. J Bacteriol. 2011;193:2868–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duarte AG, Santos AA, Pereira IAC. Electron transfer between the QmoABC membrane complex and adenosine 5′-phosphosulfate reductase. Biochim Biophys Acta Bioenerg. 2016;1857:380–6.

    Article  CAS  Google Scholar 

  54. Appel L, Willistein M, Dahl C, Ermler U, Boll M. Functional diversity of prokaryotic HdrA(BC) modules: role in flavin-based electron bifurcation processes and beyond. Biochim Biophys Acta Bioenerg. 2021;1862:148379.

    Article  CAS  PubMed  Google Scholar 

  55. Schoell M. Multiple origins of methane in the Earth. Chem Geol. 1988;71:1–10.

    Article  CAS  Google Scholar 

  56. Gruen DS, Wang DT, Könneke M, Topçuoğlu BD, Stewart LC, Goldhammer T, et al. Experimental investigation on the controls of clumped isotopologue and hydrogen isotope ratios in microbial methane. Geochim Cosmochim Acta. 2018;237:339–56.

    Article  CAS  Google Scholar 

  57. Taenzer L, Labidi J, Masterson AL, Feng X, Rumble D III, Young ED, et al. Low Δ12CH2D2 values in microbialgenic methane result from combinatorial isotope effects. Geochim Cosmochim Acta. 2020;285:225–36.

    Article  CAS  Google Scholar 

  58. Luxem KE, Leavitt WD, Zhang X. Large hydrogen isotope fractionation distinguishes nitrogenase-derived methane from other methane sources. Appl Environ Microbiol. 2020;86:e00849–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Etiope G, Schoell M, Hosgörmez H. Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth Planet Sci Lett. 2011;310:96–104.

    Article  CAS  Google Scholar 

  60. Bradley AS, Summons RE. Multiple origins of methane at the Lost City Hydrothermal Field. Earth Planet Sci Lett. 2010;297:34–41.

    Article  CAS  Google Scholar 

  61. Beulig F, Røy H, McGlynn SE, Jørgensen BB. Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME J. 2019;13:250–62.

    Article  CAS  PubMed  Google Scholar 

  62. Stewart LC, Algar CK, Fortunato CS, Larson BI, Vallino JJ, Huber JA, et al. Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents. ISME J. 2019;13:1711–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Topçuoğlu BD, Meydan C, Nguyen TB, Lang SQ, Holden JF. Growth kinetics, carbon isotope fractionation, and gene expression in the hyperthermophile Methanocaldococcus Jannaschii during hydrogen-limited growth and interspecies hydrogen transfer. Appl Environ Microbiol. 2019;85:e00180–19.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Topçuoğlu BD, Stewart LC, Morrison HG, Butterfield DA, Huber JA, Holden JF. Hydrogen limitation and syntrophic growth among natural assemblages of thermophilic methanogens at deep-sea hydrothermal vents. Front Microbiol. 2016;7:1240.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ver Eecke HC, Akerman NH, Huber JA, Butterfield DA, Holden JF. Growth kinetics and energetics of a deep-sea hyperthermophilic methanogen under varying environmental conditions. Environ Microbiol Rep. 2013;5:665–71.

    CAS  PubMed  Google Scholar 

  66. Kampik C, Liu N, Mroueh M, Franche N, Borne R, Denis Y, et al. Handling several sugars at a time: A case study of xyloglucan utilization by Ruminiclostridium cellulolyticum. mBio. 2021;12:e02206–21.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Klenk H-P, Clayton RA, Tomb J-F, White O, Nelson KE, Ketchum KA, et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997;390:364–70.

    Article  CAS  PubMed  Google Scholar 

  68. Vorholt J, Kunow J, Stetter KO, Thauer RK. Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch Microbiol. 1995;163:112–8.

    Article  CAS  Google Scholar 

  69. Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, et al. Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun. 2011;2:375–84.

    Article  PubMed  Google Scholar 

  70. Morita RY. Is H2 the universal energy source for long-term survival? Micro Ecol. 1999;38:307–20.

    Article  CAS  Google Scholar 

  71. Donnelly MI, Dagley S. Production of methanol from aromatic acids by Pseudomonas putida. J Bacteriol. 1980;142:916–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gunsalus RP, Wolfe RS. Stimulation of CO2 reduction to methane by methyl-coenzyme M in extracts of Methanobacterium. Biochem Biophys Res Commun. 1977;76:790–5.

    Article  CAS  PubMed  Google Scholar 

  73. Buchenau B, Thauer RK. Tetrahydrofolate-specific enzymes in Methanosarcina barkeri and growth dependence of this methanogenic archaeon on folic acid or p-aminobenzoic acid. Arch Microbiol. 2004;182:313–25.

    Article  CAS  PubMed  Google Scholar 

  74. Hedlund BP, McDonald AI, Lam J, Dodsworth JA, Brown JR, Hungate BA. Potential role of Thermus thermophilus and T. oshimai in high rates of nitrous oxide (N2O) production in 80 °C hot springs in the US Great Basin. Geobiology. 2011;9:471–80.

    Article  CAS  PubMed  Google Scholar 

  75. Sackett WM. Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments. Geochim Cosmochim Acta. 1978;42:571–80.

    Article  CAS  Google Scholar 

  76. Greensfelder BS, Voge HH, Good GM. Catalytic and thermal cracking of pure hydrocarbons: mechanisms of reaction. Ind Eng Chem. 1949;41:2573–84.

    Article  CAS  Google Scholar 

  77. Birkeland PW, Janda RJ. Clay mineralogy of soils developed from Quaternary deposits of the eastern Sierra Nevada, California. Geol Soc Am Bull. 1971;82:2495–514.

    Article  Google Scholar 

  78. Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol. 2016;1:16170.

    Article  CAS  PubMed  Google Scholar 

  79. Berghuis BA, Yu FB, Schulz F, Blainey PC, Woyke T, Quake SR. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc Natl Acad Sci USA. 2019;116:5037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reigstad LJ, Jorgensen SL, Schleper C. Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J. 2010;4:346–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marike Palmer for advice on systematics, Alma Parada for discussions about the computational approach, Alexander Jaffe for feedback on the manuscript, David and Sandy Jamieson for access to Great Boiling Spring, Alexander Manriquez for help with sampling at GBS, and Michael Morikone for initial metagenome analysis of the xyloglucan culture. We appreciate the CSUSB Genomics course of Spring 2018 for assistance with xyloglucan culture DNA extraction and long read sequencing.

Funding

Funding was provided by the National Science Foundation (NSF) grant DEB 1557042 and National Aeronautics and Space Administration (NASA) grant 80NNSC17KO548 and 80NSSC19M0150. SB was further supported by the NASA Postdoctoral Program (section Astrobiology), administered by Oak Ridge Associated Universities under contract with NASA. MEQ received critical funding from Stanford’s IntroSems Plus program for undergraduate students. GLC was supported by the Miller Institute for Basic Research in Science at U.C. Berkeley. Additional funding for metagenomes was provided by the U.S. Department of Energy’s Joint Genome Institute (DOE-JGI) under project 10.46936/10.25585/60007294 and DOE grant DE-EE0000716; the Nevada Renewable Energy Consortium, funded by the DOE.

Author information

Authors and Affiliations

Authors

Contributions

SB and AED developed the experimental design with input from BPH and JAD. SB conducted the experiments with assistance from MEQ. JAD achieved enrichment of M. nevadensis and has maintained the XG-degrading culture long-term. Metagenomic work was done by SB and GLC. GLC performed the metabolic inference and further enrichment of M. nevadensis. SB and JAD conducted field work at GBS. SB wrote the paper with contributions from GLC, BPH, and AED, and all authors edited the final version.

Corresponding authors

Correspondence to Steffen Buessecker or Anne E. Dekas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buessecker, S., Chadwick, G.L., Quan, M.E. et al. Mcr-dependent methanogenesis in Archaeoglobaceae enriched from a terrestrial hot spring. ISME J 17, 1649–1659 (2023). https://doi.org/10.1038/s41396-023-01472-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01472-3

Search

Quick links