Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period


A Corrigendum to this article was published on 03 June 2015

This article has been updated


A major unsolved problem in mammalian evolution is the origin of Allotheria, including Multituberculata and Haramiyida1,2,3,4,5. Multituberculates are the most diverse and best known Mesozoic era mammals and ecologically resemble rodents, but haramiyids are known mainly from isolated teeth, hampering our search for their phylogenetic relationships. Here we report a new haramiyid from the Jurassic period of China, which is, to our knowledge the largest reported so far. It has a novel dentition, a mandible resembling advanced multituberculates and postcranial features adapted for arboreal life. Our phylogenetic analysis places Haramiyida within crown Mammalia, suggesting the origin of crown Mammalia in the Late Triassic period and diversification in the Jurassic, which contrasts other estimated divergence times of crown Mammalia6,7,8. The new haramiyid reveals additional mammalian features of the group, helps to identify other haramiyids represented by isolated teeth, and shows again that, regardless of various phylogenetic scenarios, a complex pattern of evolution involving many convergences and/or reversals existed in Mesozoic mammals.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The holotype specimen and line drawing of Arboroharamiya jenkinsi (STM33-9).
Figure 2: Teeth, mandibles and tooth occlusal relationships of Arboroharamiya jenkinsi.
Figure 3: Ternary diagrams showing intrinsic manual and pedal ray III proportions.
Figure 4: Relationship of Arboroharamiya and geological distributions of major groups of Mesozoic mammals and their relatives.

Change history

  • 03 June 2015

    Nature 500, 199–202 (2013); doi:10.1038/nature12353 In Fig. 2a of this Letter the tooth P3 should be horizontally flipped, as shown in Fig. 1 of this Corrigendum. We thank Z-X. Luo, T. Martin and C-F. Zhou for pointing out the error.


  1. Sigogneau-Russell, D. Haramiyidae (Mammalia, Allotheria) en provenance du Trias supérieur de Lorraine (France). Palaeontographica A 206, 137–198 (1989)

    Google Scholar 

  2. Butler, P. M. Review of the early allotherian mammals. Acta Palaeontol. Pol. 45, 317–342 (2000)

    Google Scholar 

  3. Kielan-Jaworowska, Z., Cifelli, R. & Luo, Z.-X. Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure (Columbia Univ. Press, 2004)

    Book  Google Scholar 

  4. Butler, P. M. & Hooker, J. J. New teeth of allotherian mammals from the English Bathonian, including the earliest multituberculates. Acta Palaeontol. Pol. 50, 185–207 (2005)

    Google Scholar 

  5. Hahn, G. & Hahn, R. Evolutionary tendencies and systematic arrangement in the Haramiyida (Mammalia). Geol. Palaeontol. 40, 173–193 (2006)

    Google Scholar 

  6. Bininda-Emonds, O. R. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Meredith, R. W. et al. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011)

    Article  ADS  CAS  Google Scholar 

  8. O’Leary, M. A. et al. The placental mammal ancestor and the post-KPg radiation of placentals. Science 339, 662–667 (2013)

    Article  ADS  Google Scholar 

  9. Sullivan, C. et al. The Vertebrates of the Jurassic Daohugou Biota of Northeastern China. J. Vertebr. Paleontol (in the press)

  10. Jenkins, F. A., Gatesy, S. M., Shubin, N. H. & Amaral, W. W. Haramiyids and Triassic mammalian evolution. Nature 385, 715–718 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Averianov, A. O., Lopatin, A. & Krasnolutskii, S. The First Haramiyid (Mammalia, Allotheria) from the Jurassic of Russia. Dokl. Biol. Sci. 437, 103–106 (2011)

    Article  CAS  Google Scholar 

  12. Kermack, K. A., Kermack, D. M., Lees, P. M. & Mills, J. R. New multituberculate-like teeth from the Middle Jurassic of England. Acta Palaeontol. Pol. 43, 581–606 (1998)

    Google Scholar 

  13. Martin, T., Averianov, A. O. & Pfretzschner, H. U. Mammals from the Late Jurassic Qigu Formation in the southern Junggar Basin, Xinjiang, Northwest China. Palaeobiodivers. Palaeoenviron. 90, 295–319 (2010)

    Article  Google Scholar 

  14. Crompton, A. & Thomason, J. in Functional Morphology in Vertebrate Paleontology (ed. Thomason, J. J. ) 55–75 (Cambridge Univ. Press, 1995)

    Google Scholar 

  15. Dagosto, M. & Schmid, P. Proximal femoral anatomy of omomyiform primates. J. Hum. Evol. 30, 29–56 (1996)

    Article  Google Scholar 

  16. Lemelin, P. Morphological correlates of substrate use in didelphid marsupials: implications for primate origins. J. Zool. 247, 165–175 (1999)

    Article  Google Scholar 

  17. Napier, J. Hands Ch. 2 26 (Princeton Univ. Press, 1993)

    Google Scholar 

  18. Kirk, E. C., Lemelin, P., Hamrick, M. W., Boyer, D. M. & Bloch, J. I. Intrinsic hand proportions of euarchontans and other mammals: implications for the locomotor behavior of plesiadapiforms. J. Hum. Evol. 55, 278–299 (2008)

    Article  Google Scholar 

  19. Schmitt, D., Rose, M. D., Turnquist, J. E. & Lemelin, P. Role of the prehensile tail during ateline locomotion: experimental and osteological evidence. Am. J. Phys. Anthropol. 126, 435–446 (2005)

    Article  Google Scholar 

  20. Youlatos, D. Osteological correlates of tail prehensility in carnivorans. J. Zool. 259, 423–430 (2003)

    Article  Google Scholar 

  21. Hahn, G., Sigogneau-Russell, D. & Wouters, G. New data on Theroteinidae: their relations with Paulchoffatiidae and Haramiyidae. Geol. Palaeontol. 23, 205–215 (1989)

    Google Scholar 

  22. Simpson, G. G. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85, 1–350 (1945)

    Google Scholar 

  23. Luo, Z.-X., Chen, P.-J., Li, G. & Chen, M. A new eutriconodont mammal and evolutionary development in early mammals. Nature 446, 288–293 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Rowe, T., Rich, T. H., Vickers-Rich, P., Springer, M. & Woodburne, M. O. The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proc. Natl Acad. Sci. USA 105, 1238–1242 (2008)

    Article  ADS  CAS  Google Scholar 

  25. Ogg, J. G. in A Geological Time Scale 2012 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. ) 681–730 (Elsevier, 2012)

    Google Scholar 

  26. Luo, Z.-X. Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Hunt, T. et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318, 1913–1916 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Wiegmann, B. M. et al. Episodic radiations in the fly tree of life. Proc. Natl Acad. Sci. USA 108, 5690–5695 (2011)

    Article  ADS  CAS  Google Scholar 

  29. Magallóan, S. A. & Sanderson, M. J. Angiosperm divergence times: the effect of genes, codon positions, and time constraints. Evolution 59, 1653–1670 (2005)

    Article  Google Scholar 

  30. Smith, S. A., Beaulieu, J. M. & Donoghue, M. J. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc. Natl Acad. Sci. USA 107, 5897–5902 (2010)

    Article  ADS  CAS  Google Scholar 

Download references


We thank C. Zhao for illustrations, J. R. Wible for access to comparative specimens, W. Zhang for scanning electron microscope photography and T. Qiao for help with PAUP analyses. This work was supported by the National Basic Research Program of China 973 Program 2012CB821906, National Natural Science Foundation of China 41172016 and 41128002, and the Hundred Talents Programs of the Chinese Academy of Sciences.

Author information

Authors and Affiliations



X.Z., S.B. and J.M. designed the project. X.Z., S.B., X.W. and J.M. performed the research. S.B. and J.M. wrote the manuscript.

Corresponding authors

Correspondence to Shundong Bi or Jin Meng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

This published work and related nomenclatural acts have been registered at the ZooBank, the proposed online registration system for the International Code of Zoological Nomenclature. The Life Science Identifiers (LSIDs) for this publication include:, (family), genus) and (species).

Supplementary information

Supplementary Information

This file contains Supplementary Information parts A-K, including Supplementary Text, Supplementary Figures 1-11, Supplementary Tables 1-3, Supplementary Data and additional references – see contents pages for details. (PDF 9034 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zheng, X., Bi, S., Wang, X. et al. A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature 500, 199–202 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing