Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust

Abstract

Basaltic lavas erupted at some oceanic intraplate hotspot volcanoes are thought to sample ancient subducted crustal materials1,2. However, the residence time of these subducted materials in the mantle is uncertain and model-dependent3, and compelling evidence for their return to the surface in regions of mantle upwelling beneath hotspots is lacking. Here we report anomalous sulphur isotope signatures indicating mass-independent fractionation (MIF) in olivine-hosted sulphides from 20-million-year-old ocean island basalts from Mangaia, Cook Islands (Polynesia), which have been suggested to sample recycled oceanic crust3,4. Terrestrial MIF sulphur isotope signatures (in which the amount of fractionation does not scale in proportion with the difference in the masses of the isotopes) were generated exclusively through atmospheric photochemical reactions until about 2.45 billion years ago5,6,7. Therefore, the discovery of MIF sulphur in these young plume lavas suggests that sulphur—probably derived from hydrothermally altered oceanic crust—was subducted into the mantle before 2.45 billion years ago and recycled into the mantle source of Mangaia lavas. These new data provide evidence for ancient materials, with negative Δ33S values, in the mantle source for Mangaia lavas. Our data also complement evidence for recycling of the sulphur content of ancient sedimentary materials to the subcontinental lithospheric mantle that has been identified in diamond-hosted sulphide inclusions8,9. This Archaean age for recycled oceanic crust also provides key constraints on the length of time that subducted crustal material can survive in the mantle, and on the timescales of mantle convection from subduction to upwelling beneath hotspots.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reflected-light photomicrographs of sulphide inclusions.
Figure 2: Δ33S versus δ34S for olivine-hosted sulphide inclusions from Mangaia (this study) and diamond-hosted sulphides (from ref. 8) compared to previously published S-isotope data.
Figure 3: The Pb-isotope composition of olivine-hosted sulphides are the same as Mangaia whole rocks.

References

  1. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982)

    Article  ADS  CAS  Google Scholar 

  2. White, W. & Hofmann, A., Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296, 821–825 (1982)

    Article  ADS  CAS  Google Scholar 

  3. Hauri, E. & Hart, S. R. Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean. Earth Planet. Sci. Lett. 114, 353–371 (1993)

    Article  ADS  CAS  Google Scholar 

  4. Hanyu, T. et al. Geochemical characteristics and origin of the HIMU reservoir: a possible mantle plume source in the lower mantle. Geochem. Geophys. Geosyst.. 12, Q0AC09, http://dx.doi.org/10.1029/2010GC003252 (2011)

    Article  Google Scholar 

  5. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Farquhar, J., Zerkle, A. L. & Bekker, A. Geological constraints on the origin of oxygenic photosynthesis. Photosynth. Res. 107, 11–36 (2011)

    Article  CAS  Google Scholar 

  7. Johnston, D. T. Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle. Earth Sci. Rev. 106, 161–183 (2011)

    Article  ADS  CAS  Google Scholar 

  8. Farquhar, J., Wing, B., McKeegan, K. & Harris, J. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298, 2369–2372 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Thomassot, E. et al. Metasomatic diamond growth: a multi-isotope study (13C, 15N, 33S, 34S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana). Earth Planet. Sci. Lett. 282, 79–90 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Zindler, A. & Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986)

    Article  ADS  CAS  Google Scholar 

  11. Kelley, K. A., Plank, T., Farr, L., Ludden, J. & Staudigel, H. Subduction cycling of U, Th, and Pb. Earth Planet. Sci. Lett. 234, 369–383 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Niu, Y. & O'Hara, M. J. Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations. J. Geophys. Res. 108, 2209–2228 (2003)

    ADS  Google Scholar 

  13. Pilet, S., Baker, M. B. & Stolper, E. M. Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916–919 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Turner, D. & Jarrard, R. K-Ar dating of the Cook-Austral island chain: a test of the hot-spot hypothesis. J. Volcanol. Geotherm. Res. 12, 187–220 (1982)

    Article  ADS  CAS  Google Scholar 

  15. Chaussidon, M., Albarède, F. & Sheppard, S. M. F. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth Planet. Sci. Lett. 92, 144–156 (1989)

    Article  ADS  CAS  Google Scholar 

  16. Saal, A. E., Hart, S. R., Shimizu, N., Hauri, E. H. & Layne, G. D. Pb isotopic variability in melt inclusions from oceanic island basalts, Polynesia. Science 282, 1481–1484 (1998)

    Article  CAS  Google Scholar 

  17. Yurimoto, H. et al. Lead isotopic compositions in olivine-hosted melt inclusions from HIMU basalts and possible link to sulfide components. Phys. Earth Planet. Inter. 146, 231–242 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Ono, S., Wing, B., Johnston, D., Farquhar, J. & Rumble, D. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim. Cosmochim. Acta 70, 2238–2252 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Shen, Y. et al. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nature Commun. 2, 210 (2011)

    Article  ADS  Google Scholar 

  20. Rouxel, O., Ono, S., Alt, J., Rumble, D. & Ludden, J. Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801. Earth Planet. Sci. Lett. 268, 110–123 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Taylor, B. The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi. Earth Planet. Sci. Lett. 241, 372–380 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Frey, F. et al. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth Planet. Sci. Lett. 176, 73–89 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Kamenetsky, V., Maas, R. & Sushchevskaya, N. Remnants of Gondwanan continental lithosphere in oceanic upper mantle: evidence from the South Atlantic Ridge. Geology 29, 243–246 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Bekker, A. et al. Atmospheric sulfur in Archean komatiite-hosted nickel deposits. Science 326, 1086–1089 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Farquhar, J. & Wing, B. in Mineral Deposits and Earth Evolution (eds McDonald, I., Boyce, A. J., Butler, I. B., Herrington, R. J. & Polya, D. A.) 167–177 (Spec. Publ. 248, Geol. Soc. Lond., 2005)

    Google Scholar 

  26. Ueno, Y., Ono, S., Rumble, D. & Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Bao, H., Rumble, D. & Lowe, D. R. The five stable isotope compositions of Fig Tree barites: implications on sulfur cycle in ca. 3.2Ga oceans. Geochim. Cosmochim. Acta 71, 4868–4879 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Jamieson, J., Wing, B., Hannington, M. & Farquhar, J. Evaluating isotopic equilibrium among sulfide mineral pairs in Archean ore deposits: case study from the Kidd Creek VMS deposit, Ontario, Canada. Econ. Geol. 101, 1055–1061 (2006)

    Article  CAS  Google Scholar 

  29. Grove, T. L. & Parman, S. W. Thermal evolution of the Earth as recorded by komatiites. Earth Planet. Sci. Lett. 219, 173–187 (2004)

    Article  ADS  CAS  Google Scholar 

  30. Kamber, B. S. & Whitehouse, M. J. Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology 5, 5–17 (2007)

    Article  CAS  Google Scholar 

  31. McLoughlin, N., Grosch, E. G., Kilburn, M. R. & Wacey, D. Sulfur isotope evidence for a Paleoarchean subseafloor biosphere, Barberton, South Africa. Geology 40, 1031–1034 (2012)

    Article  ADS  CAS  Google Scholar 

  32. Rose-Koga, E. F. et al. Mantle source heterogeneity for South Tyrrhenian magmas revealed by Pb isotopes and halogen contents of olivine-hosted melt inclusions. Chem. Geol. 334, 266–279 (2012)

    Article  ADS  CAS  Google Scholar 

  33. Whitehouse, M. J. Multiple sulfur isotope determination by SIMS: evaluation of reference sulfides for Δ33S with observations and a case study on the determination of Δ36S. Geostand. Geoanal. Res. http://dx.doi.org/10.1111/j.1751-908X.2012.00188.x (published online, 7 January 2013)

    Google Scholar 

  34. Crowe, D. E. & Vaughan, R. G. Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of 34S/32S ratios. Am. Mineral. 81, 187–193 (1996)

    Article  ADS  CAS  Google Scholar 

  35. Forrest, J. & Newman, L. Ag-110 microgram sulphate analysis for short time resolution of ambient levels of sulphur aerosol. Anal. Chem. 49, 1579–1584 (1977)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.G.J. acknowledges Boston University start-up funds and NSF grant EAR-1145202 that supported this work. E.F.R.-K. and K.T.K. acknowledge support from EU SYNTHESYS and French ANR SlabFlux, this is Laboratory of Excellence ClerVolc contribution number 54. The NordSIMS facility is financed and operated under a joint Nordic contract; this is NordSIMS contribution number 337. We thank B. White for his review of the manuscript, and P. Cartigny and J. Labidi for discussion. We thank D.T. Johnston, D. Papineau, O. J. Rouxel and S. Ono for advice in compiling the global S-isotope database. We also thank N. Shimizu, B. D. Monteleone, E. A. Price, and P. Schiano for assistance with sample preparation.

Author information

Authors and Affiliations

Authors

Contributions

R.A.C. wrote the paper and prepared the figures and tables. M.G.J. conceived the project. R.A.C., E.F.R.-K, K.T.K. and M.G.J. performed sample preparation. M.J.W. performed the in situ SIMS analyses. J.F. and M.A.A. performed the S-isotope analyses on bulk olivine separates. J.M.D.D. and E.H.H. aided in the field. All authors participated in the discussion and interpretation of results, and preparation of the manuscript.

Corresponding author

Correspondence to Rita A. Cabral.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, which describes the sulfide inclusions in greater detail and addresses the isotope measurements on inclusions, bulk olivines and standards; Supplementary Figures 1-5 details as follows: 1 Schematic representation of the model for preserving 33S anomalies in the mantle, 2 33S measurements compared to previously published data showing 33S through time, 3 shows transmitted light, reflected light, and backscattered electron (BSE) images of each inclusion, 4 shows the individual S-isotope measurements of samples, standards, and monitors for each analytical session, 5 Correlated error ellipses that enabled the accurate determination of small 33S anomalies; Supplementary Tables 1-5 details as follows: 1 Compositions of the host olivines and a single glassy inclusion, 2 Major element data for the sulfide inclusions, 3 S-isotope data for in situ SIMS analyses of sulfide inclusions and standards, 4 Pb-isotope data for the sulfide inclusions, 5 S-isotope data by IRMS on SIMS sulfide standards and bulk olivine separates from the rock sample (MGA-B-47) that hosts the sulfide with the most extreme 33S anomaly; and Supplementary References. (PDF 931 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabral, R., Jackson, M., Rose-Koga, E. et al. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496, 490–493 (2013). https://doi.org/10.1038/nature12020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12020

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing