Functional screening identifies miRNAs inducing cardiac regeneration


In mammals, enlargement of the heart during embryonic development is primarily dependent on the increase in cardiomyocyte numbers. Shortly after birth, however, cardiomyocytes stop proliferating and further growth of the myocardium occurs through hypertrophic enlargement of the existing myocytes. As a consequence of the minimal renewal of cardiomyocytes during adult life, repair of cardiac damage through myocardial regeneration is very limited. Here we show that the exogenous administration of selected microRNAs (miRNAs) markedly stimulates cardiomyocyte proliferation and promotes cardiac repair. We performed a high-content microscopy, high-throughput functional screening for human miRNAs that promoted neonatal cardiomyocyte proliferation using a whole-genome miRNA library. Forty miRNAs strongly increased both DNA synthesis and cytokinesis in neonatal mouse and rat cardiomyocytes. Two of these miRNAs (hsa-miR-590 and hsa-miR-199a) were further selected for testing and were shown to promote cell cycle re-entry of adult cardiomyocytes ex vivo and to promote cardiomyocyte proliferation in both neonatal and adult animals. After myocardial infarction in mice, these miRNAs stimulated marked cardiac regeneration and almost complete recovery of cardiac functional parameters. The miRNAs identified hold great promise for the treatment of cardiac pathologies consequent to cardiomyocyte loss.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: High-content screening identifies miRNAs regulating CM proliferation.
Figure 2: miRNAs increase cytokinesis and proliferation of post-natal CMs.
Figure 3: Genes downregulated by miR-590-3p and miR-199a-3p increase CM proliferation.
Figure 4: miR-590 and miR-199a induce CM proliferation in vivo.
Figure 5: miR-590-3p and miR-199a-3p induce marked cardiac regeneration after myocardial infarction.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The cardiomyocyte miRNA expression microarray and transcriptomic data are deposited at GEO, under accession numbers GSE41537 and GSE41538, respectively.


  1. 1

    Ahuja, P., Sdek, P. & MacLellan, W. R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 87, 521–544 (2007)

    CAS  Article  Google Scholar 

  2. 2

    van Amerongen, M. J. & Engel, F. B. Features of CM proliferation and its potential for cardiac regeneration. J. Cell. Mol. Med. 12, 2233–2244 (2008)

    Article  Google Scholar 

  3. 3

    Bicknell, K. A., Coxon, C. H. & Brooks, G. Can the CM cell cycle be reprogrammed? J. Mol. Cell. Cardiol. 42, 706–721 (2007)

    CAS  Article  Google Scholar 

  4. 4

    Bergmann, O. et al. Evidence for CM renewal in humans. Science 324, 98–102 (2009)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Kajstura, J. et al. Cardiomyogenesis in the adult human heart. Circ. Res. 107, 305–315 (2010)

    CAS  Article  Google Scholar 

  6. 6

    Beltrami, A. P. et al. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 344, 1750–1757 (2001)

    CAS  Article  Google Scholar 

  7. 7

    Robledo, M. Myocardial regeneration in young rats. Am. J. Pathol. 32, 1215–1239 (1956)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Nag, A. C., Carey, T. R. & Cheng, M. DNA synthesis in rat heart cells after injury and the regeneration of myocardia. Tissue Cell 15, 597–613 (1983)

    CAS  Article  Google Scholar 

  9. 9

    Kajstura, J. et al. Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing-induced cardiomyopathy in rats. Circ. Res. 74, 383–400 (1994)

    CAS  Article  Google Scholar 

  10. 10

    Reiss, K., Kajstura, J., Capasso, J. M., Marino, T. A. & Anversa, P. Impairment of myocyte contractility following coronary artery narrowing is associated with activation of the myocyte IGF1 autocrine system, enhanced expression of late growth related genes, DNA synthesis, and myocyte nuclear mitotic division in rats. Exp. Cell Res. 207, 348–360 (1993)

    CAS  Article  Google Scholar 

  11. 11

    Bartel, D. P. MiRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009)

    CAS  Article  Google Scholar 

  12. 12

    Pasquinelli, A. E. MiRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Rev. Genet. 13, 271–282 (2012)

    CAS  Article  Google Scholar 

  13. 13

    Chen, J. F. et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc. Natl Acad. Sci. USA 105, 2111–2116 (2008)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Rao, P. K. et al. Loss of cardiac miRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ. Res. 105, 585–594 (2009)

    CAS  Article  Google Scholar 

  15. 15

    Ikeda, S. et al. Altered miRNA expression in human heart disease. Physiol. Genomics 31, 367–373 (2007)

    CAS  Article  Google Scholar 

  16. 16

    Matkovich, S. J. et al. Reciprocal regulation of myocardial miRNAs and messenger RNA in human cardiomyopathy and reversal of the miRNA signature by biomechanical support. Circulation 119, 1263–1271 (2009)

    CAS  Article  Google Scholar 

  17. 17

    Thum, T. et al. MiRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116, 258–267 (2007)

    CAS  Article  Google Scholar 

  18. 18

    van Rooij, E. et al. A signature pattern of stress-responsive miRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255–18260 (2006)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific miRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell 129, 303–317 (2007)

    CAS  Article  Google Scholar 

  21. 21

    Liu, N. et al. miRNA-133a regulates CM proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22, 3242–3254 (2008)

    CAS  Article  Google Scholar 

  22. 22

    Porrello, E. R. et al. MiR-15 family regulates postnatal mitotic arrest of CMs. Circ. Res. 109, 670–679 (2011)

    CAS  Article  Google Scholar 

  23. 23

    Salic, A. & Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo . Proc. Natl Acad. Sci. USA 105, 2415–2420 (2008)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M. & Field, L. J. CM DNA synthesis and binucleation during murine development. Am. J. Physiol. 271, H2183–H2189 (1996)

    CAS  PubMed  Google Scholar 

  25. 25

    Li, F., Wang, X., Capasso, J. M. & Gerdes, A. M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 28, 1737–1746 (1996)

    CAS  Article  Google Scholar 

  26. 26

    Kubin, T. et al. Oncostatin M is a major mediator of CM dedifferentiation and remodeling. Cell Stem Cell 9, 420–432 (2011)

    CAS  Article  Google Scholar 

  27. 27

    Fredj, S., Bescond, J., Louault, C. & Potreau, D. Interactions between cardiac cells enhance CM hypertrophy and increase fibroblast proliferation. J. Cell. Physiol. 202, 891–899 (2005)

    CAS  Article  Google Scholar 

  28. 28

    Zhang, Y. et al. Dedifferentiation and proliferation of mammalian CMs. PLoS ONE 5, e12559 (2010)

    ADS  Article  Google Scholar 

  29. 29

    Bird, S. D. et al. The human adult CM phenotype. Cardiovasc. Res. 58, 423–434 (2003)

    CAS  Article  Google Scholar 

  30. 30

    Pouliquin, P. & Dulhunty, A. F. Homer and the ryanodine receptor. Eur. Biophys. J. 39, 91–102 (2009)

    CAS  Article  Google Scholar 

  31. 31

    Trivedi, C. M. et al. Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation. Dev. Cell 19, 450–459 (2010)

    CAS  Article  Google Scholar 

  32. 32

    Inagaki, K. et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol. Ther. 14, 45–53 (2006)

    CAS  Article  Google Scholar 

  33. 33

    Katare, R. et al. Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ. Res. 108, 1238–1251 (2011)

    CAS  Article  Google Scholar 

  34. 34

    Secchiero, P. et al. Systemic tumor necrosis factor-related apoptosis-inducing ligand delivery shows antiatherosclerotic activity in apolipoprotein E-null diabetic mice. Circulation 114, 1522–1530 (2006)

    CAS  Article  Google Scholar 

  35. 35

    Ahuja, P., Perriard, E., Perriard, J. C. & Ehler, E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian CMs. J. Cell Sci. 117, 3295–3306 (2004)

    CAS  Article  Google Scholar 

  36. 36

    Zentilin, L. et al. CM VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 24, 1467–1478 (2010)

    CAS  Article  Google Scholar 

  37. 37

    Collesi, C., Zentilin, L., Sinagra, G. & Giacca, M. Notch1 signaling stimulates proliferation of immature CMs. J. Cell Biol. 183, 117–128 (2008)

    CAS  Article  Google Scholar 

  38. 38

    Jopling, C. et al. Zebrafish heart regeneration occurs by CM dedifferentiation and proliferation. Nature 464, 606–609 (2010)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ CMs. Nature 464, 601–605 (2010)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Dorn, G. W., II Apoptotic and non-apoptotic programmed CM death in ventricular remodelling. Cardiovasc. Res. 81, 465–473 (2009)

    CAS  Article  Google Scholar 

  43. 43

    Nishida, K. & Otsu, K. Cell death in heart failure. Circ. J. 72 (Suppl. A). A17–A21 (2008)

    Article  Google Scholar 

  44. 44

    Bolli, R. et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378, 1847–1857 (2011)

    Article  Google Scholar 

  45. 45

    Makkar, R. R. et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379, 895–904 (2012)

    Article  Google Scholar 

  46. 46

    Xiao, L. et al. MEK1/2-ERK1/2 mediates α1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J. Mol. Cell. Cardiol. 33, 779–787 (2001)

    CAS  Article  Google Scholar 

  47. 47

    Arsic, N. et al. Induction of functional neovascularization by combined VEGF and angiopoietin-1 gene transfer using AAV vectors. Mol. Ther. 7, 450–459 (2003)

    CAS  Article  Google Scholar 

  48. 48

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402–408 (2001)

    CAS  Article  Google Scholar 

  49. 49

    Sturn, A., Quackenbush, J. & Trajanoski, Z. Genesis: cluster analysis of microarray data. Bioinformatics 18, 207–208 (2002)

    CAS  Article  Google Scholar 

  50. 50

    Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008)

    CAS  Article  Google Scholar 

Download references


The authors are grateful to M. Dapas and M. Zotti for technical support in AAV production, to M. Sturnega for help in animal experimentation and to S. Kerbavcic for editorial assistance. A.E. is recipient of a FEBS Long Term Fellowship. This work was supported by Advanced Grant 250124 from the European Research Council (ERC) to M.G. and from Project CTC from the Fondazione CRTrieste, Trieste, Italy.

Author information




A.E., M.M. and M.G. designed the study. A.E., M.M., S.Z. and M.D.F. performed the experiments and analysed the data. G.S. provided clinical consultancy for the animal study. L.Z. was responsible for AAV production. A.E., M.M. and M.G. wrote the manuscript.

Corresponding author

Correspondence to Mauro Giacca.

Ethics declarations

Competing interests

A.E., M.M., S.Z. and M.G. are listed as co-inventors on a pending patent held by ICGEB that relates to the clinical development of the miRNAs promoting cardiac proliferation described in this paper.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-19 and Supplementary Tables 1and 3. (PDF 4386 kb)

Supplementary table

This file contains Supplementary Table 2. (XLSX 765 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eulalio, A., Mano, M., Ferro, M. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376–381 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing