Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bose glass and Mott glass of quasiparticles in a doped quantum magnet

Abstract

The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the best-known examples are Bose–Einstein condensation and superfluidity, which have been tested experimentally in a variety of different systems. When bosons interact, disorder can destroy condensation, leading to a ‘Bose glass’. This phase has been very elusive in experiments owing to the absence of any broken symmetry and to the simultaneous absence of a finite energy gap in the spectrum. Here we report the observation of a Bose glass of field-induced magnetic quasiparticles in a doped quantum magnet (bromine-doped dichloro-tetrakis-thiourea-nickel, DTN). The physics of DTN in a magnetic field is equivalent to that of a lattice gas of bosons in the grand canonical ensemble; bromine doping introduces disorder into the hopping and interaction strength of the bosons, leading to their localization into a Bose glass down to zero field, where it becomes an incompressible Mott glass. The transition from the Bose glass (corresponding to a gapless spin liquid) to the Bose–Einstein condensate (corresponding to a magnetically ordered phase) is marked by a universal exponent that governs the scaling of the critical temperature with the applied field, in excellent agreement with theoretical predictions. Our study represents a quantitative experimental account of the universal features of disordered bosons in the grand canonical ensemble.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sketch of the bosonic phases of DTN and Br-doped DTN.
Figure 2: Thermodynamic properties of the magnetic Bose glass and BEC phases.
Figure 3: Phase diagrams in the field–temperature plane.
Figure 4: Specific heat scaling and Mott glass.
Figure 5: Critical temperature scaling close to the zero-temperature critical fields.

References

  1. 1

    Kramer, B. & MacKinnon, A. Localization: theory and experiment. Rep. Prog. Phys. 56, 1469–1564 (1993)

    CAS  Article  ADS  Google Scholar 

  2. 2

    Fallani, L., Fort, C. & Inguscio, M. Bose-Einstein condensates in disordered potentials. Adv. At. Mol. Opt. Phys. 56, 119–160 (2008)

    CAS  Article  ADS  Google Scholar 

  3. 3

    Giamarchi, T. & Schulz, H. J. Anderson localization and interactions in one-dimensional metals. Phys. Rev. B 37, 325–340 (1988)

    CAS  Article  ADS  Google Scholar 

  4. 4

    Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989)

    CAS  Article  ADS  Google Scholar 

  5. 5

    Crowell, P. A., Van Keulz, F. W. & Reppy, J. D. Onset of superfluidity in 4He films adsorbed on disordered substrates. Phys. Rev. B 55, 12620–12634 (1997)

    CAS  Article  ADS  Google Scholar 

  6. 6

    Sacépé, B. et al. Localization of preformed Cooper pairs in disordered superconductor. Nature Phys. 7, 239–244 (2011)

    Article  ADS  Google Scholar 

  7. 7

    Bouadim, K., Loh, Y. L., Randeria, M. & Trivedi, N. Single- and two-particle energy gaps across the disorder-driven superconductor-insulator transition. Nature Phys. 7, 884–889 (2011)

    CAS  Article  ADS  Google Scholar 

  8. 8

    Sanchez-Palencia, L. & Lewenstein, M. Disordered quantum gases under control. Nature Phys. 6, 87–95 (2010)

    CAS  Article  ADS  Google Scholar 

  9. 9

    Deng, H. Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010)

    CAS  Article  ADS  Google Scholar 

  10. 10

    Giamarchi, T., Rüegg & Tchernyshyov, O. Bose-Einstein condensation in magnetic insulators. Nature Phys. 4, 198–204 (2008)

    CAS  Article  ADS  Google Scholar 

  11. 11

    Nohadani, O., Wessel, S. & Haas, S. Bose-glass phases in disordered quantum magnets. Phys. Rev. Lett. 95, 227201 (2005)

    Article  ADS  Google Scholar 

  12. 12

    Roscilde, T. & Haas, S. Quantum localization in bilayer Heisenberg antiferromagnets with site dilution. Phys. Rev. Lett. 95, 207206 (2005)

    Article  ADS  Google Scholar 

  13. 13

    Roscilde, T. Field-induced quantum-disordered phases in S = 1/2 weakly coupled dimer systems with site dilution. Phys. Rev. B 74, 144418 (2006)

    Article  ADS  Google Scholar 

  14. 14

    Manaka, H., Kolomiets, A. V. & Goto, T. Disordered states in IPA-Cu(ClxBr1–x)3 induced by bond randomness. Phys. Rev. Lett. 101, 077204 (2008)

    CAS  Article  ADS  Google Scholar 

  15. 15

    Hong, T., Zheludev, A., Manaka, H. & Regnault, L.-P. Evidence of a magnetic Bose glass in (CH3)2CHNH3Cu(Cl0. 95Br0. 05)3 from neutron diffraction. Phys. Rev. B 81, 060410 (2010)

    Article  ADS  Google Scholar 

  16. 16

    Zapf, V. S. et al. Bose-Einstein condensation of S = 1 nickel spin degrees of freedom in NiCl2-4SC(NH2)2 . Phys. Rev. Lett. 96, 077204 (2006)

    CAS  Article  ADS  Google Scholar 

  17. 17

    Yin, L., Xia, J. S., Zapf, V. S., Sullivan, N. S. & Paduan-Filho, A. Direct measurement of the Bose-Einstein condensation universality class in NiCl2-4SC(NH2)2 at ultralow temperatures. Phys. Rev. Lett. 101, 187205 (2008)

    CAS  Article  ADS  Google Scholar 

  18. 18

    Orignac, E., Giamarchi, T. & Le Doussal, P. A possible new phase of commensurate insulators with disorder: the Mott glass. Phys. Rev. Lett. 83, 2378–2381 (1999)

    CAS  Article  ADS  Google Scholar 

  19. 19

    Prokof'ev, N. & Svistunov, B. Superfluid-insulator transition in commensurate disordered bosonic systems: large-scale worm algorithm simulations. Phys. Rev. Lett. 92, 015703 (2004)

    Article  ADS  Google Scholar 

  20. 20

    Altman, E., Kafri, Y., Polkovnikov, A. & Refael, G. Phase transition in a system of one-dimensional bosons with strong disorder. Phys. Rev. Lett. 93, 150402 (2004)

    Article  ADS  Google Scholar 

  21. 21

    Roscilde, T. & Haas, S. Mott glass in site-diluted S = 1 antiferromagnets with single-ion anisotropy. Phys. Rev. Lett. 99, 047205 (2007)

    Article  ADS  Google Scholar 

  22. 22

    Zvyagin, S. A. et al. Magnetic excitations in the spin-1 anisotropic Heisenberg antiferromagnetic chain system NiCl2-4SC(NH2)2 . Phys. Rev. Lett. 98, 047205 (2007)

    CAS  Article  ADS  Google Scholar 

  23. 23

    Zvyagin, S. A. et al. Spin dynamics of NiCl2-4SC(NH2)2 in the field-induced ordered phase. Phys. Rev. B 77, 092413 (2008)

    Article  ADS  Google Scholar 

  24. 24

    Yin, L., Xia, J. S., Zapf, V. S. & Sullivan, N. S. &. Paduan-Filho, A. Magnetic susceptibility measurements at ultra-low temperatures. J. Low Temp. Phys. 158, 710–715 (2010)

    CAS  Article  ADS  Google Scholar 

  25. 25

    Balabanyan, K. G., Prokof'ev, N. & Svistunov, B. Superfluid-insulator transition in commensurate one-dimensional bosonic system with off-diagonal disorder. Phys. Rev. Lett. 95, 055701 (2005)

    Article  ADS  Google Scholar 

  26. 26

    Yu, R., Haas, S. & Roscilde, T. Universal phase diagram of disordered bosons from a doped quantum magnet. Europhys. Lett. 89, 10009 (2010)

    Article  ADS  Google Scholar 

  27. 27

    Weickert, F. et al. Low temperature thermodynamic properties near the field-induced quantum critical point in DTN. Phys. Rev. B 85, 184408 (2012)

    Article  ADS  Google Scholar 

  28. 28

    Kawashima, N. Quantum critical point of the XY model and condensation of field-induced quasiparticles in dimer compounds. J. Phys. Soc. Jpn 73, 3219–3222 (2004)

    CAS  Article  ADS  Google Scholar 

  29. 29

    Yu, R. et al. Quantum critical scaling at a Bose-glass/superfluid transition: theory and experiment on a model quantum magnet. Preprint at http://arXiv.org/abs/1204.5409 (2012)

Download references

Acknowledgements

Work at the High Magnetic Field Laboratory at the Physics Institute of the University of São Paulo was supported in part by the Brazilian agencies FAPESP and CNPq. Measurements at the NHMFL High B/T and pulsed field facilities were supported by NSF grant DMR 0654118, by the State of Florida, and by the DOE. Work at LANL was supported by the NSF, and by the DOE's Laboratory Directed Research and Development programme under 20100043DR. C.F.M. acknowledges support by UEFISCDI (project RP-10). The numerical simulations were performed on the computer facilities of the NCCS at the Oak Ridge National Laboratories, and supported by INCITE Award MAT013 of the Office of Science, DOE. Further theory work was supported by the DOE (grant DE-FG03-01ER45908 and DE-FG02-05ER46240), the NSF (grant DMR-1006985) and by the Robert A. Welch Foundation (grant C-1411).

Author information

Affiliations

Authors

Contributions

R.Y., S.H. and T.R. performed the numerical simulations and the theoretical analysis; L.Y., N.S.S., J.S.X. and C.H. performed the susceptibility measurements; A.P.-F. and N.F.O. synthesized the samples and performed the d.c. magnetization measurements; A.S., C.F.M., F.W., R.M., E.-D.M. and V.S.Z. performed the specific heat measurements; and B.L.S. performed the X-ray measurements. V.S.Z. coordinated the experimental efforts and T.R. the theoretical ones. T.R. wrote the manuscript, with the contributions of all the authors.

Corresponding author

Correspondence to Tommaso Roscilde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-9 and additional references. (PDF 705 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, R., Yin, L., Sullivan, N. et al. Bose glass and Mott glass of quasiparticles in a doped quantum magnet. Nature 489, 379–384 (2012). https://doi.org/10.1038/nature11406

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing