Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Condensation and thermalization of an easy-plane ferromagnet in a spinor Bose gas

Abstract

Bose–Einstein condensates are an ideal platform to explore dynamical phenomena emerging in the many-body limit, such as the build-up of long-range coherence, superfluidity or spontaneous symmetry breaking. Here we study the thermalization dynamics of an easy-plane ferromagnet employing a homogeneous one-dimensional spinor Bose gas. We demonstrate the dynamic emergence of effective long-range coherence for the spin field and verify spin-superfluidity by experimentally testing Landau’s criterion. We reveal the structure of one massive and two massless emerging modes—a consequence of explicit and spontaneous symmetry breaking, respectively. Our experiments allow us to observe the thermalization of an easy-plane ferromagnetic Bose gas. The relevant momentum-resolved observables are in agreement with a thermal prediction obtained from an underlying microscopic model within the Bogoliubov approximation. Our methods and results are a step towards a quantitative understanding of condensation dynamics in large magnetic spin systems and the study of the role of entanglement and topological excitations for their thermalization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Homogeneous spinor Bose gas and easy-plane ferromagnetic properties.
Fig. 2: Emergence of effective long-range coherence and superfluidity.
Fig. 3: Local spin and density control enables probing of quasiparticle properties.
Fig. 4: Structure factors of different observables at late times.

Similar content being viewed by others

Data availability

Data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Bloch, I., Dalibard, J. & Nascimbéne, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article  Google Scholar 

  2. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article  ADS  Google Scholar 

  3. Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

    Article  ADS  Google Scholar 

  4. Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015).

    Article  Google Scholar 

  5. Reimann, P. Typical fast thermalization processes in closed many-body systems. Nat. Commun. 7, 10821 (2016).

    Article  ADS  Google Scholar 

  6. Gogolin, C. & Eisert, J. Equilibration, thermalisation and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 056001 (2016).

    Article  ADS  Google Scholar 

  7. Mori, T., Ikeda, T. N., Kaminishi, E. & Ueda, M. Thermalization and prethermalization in isolated quantum systems: a theoretical overview. J. Phys. B Atom. Mol. Opt. Phys. 51, 112001 (2018).

    Article  ADS  Google Scholar 

  8. Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    Article  ADS  Google Scholar 

  9. Neill, C. et al. Ergodic dynamics and thermalization in an isolated quantum system. Nat. Phys. 12, 1037–1041 (2016).

    Article  Google Scholar 

  10. Clos, G., Porras, D., Warring, U. & Schaetz, T. Time-resolved observation of thermalization in an isolated quantum system. Phys. Rev. Lett. 117, 170401 (2016).

    Article  ADS  Google Scholar 

  11. Evrard, B., Qu, A., Dalibard, J. & Gerbier, F. From many-body oscillations to thermalization in an isolated spinor gas. Phys. Rev. Lett. 126, 063401 (2021).

    Article  ADS  Google Scholar 

  12. Griffin, A., Snoke, D. W. & Stringari, S. (eds) Bose-Einstein Condensation (Cambridge Univ. Press, 1995).

  13. Bloch, I., Hänsch, T. W. & Esslinger, T. Measurement of the spatial coherence of a trapped Bose gas at the phase transition. Nature 403, 166–170 (2000).

    Article  ADS  Google Scholar 

  14. Deng, H., Solomon, G. S., Hey, R., Ploog, K. H. & Yamamoto, Y. Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99, 126403 (2007).

    Article  ADS  Google Scholar 

  15. Damm, T., Dung, D., Vewinger, F., Weitz, M. & Schmitt, J. First-order spatial coherence measurements in a thermalized two-dimensional photonic quantum gas. Nat. Commun. 8, 158 (2017).

    Article  ADS  Google Scholar 

  16. Kollath, C., Giamarchi, T. & Rüegg, C. in Universal Themes of Bose-Einstein Condensation (eds Proukakis, N. P. et al.) 549–568 (Cambridge Univ. Press, 2017).

  17. Jepsen, P. N. et al. Spin transport in a tunable Heisenberg model realized with ultracold atoms. Nature 588, 403–407 (2020).

    Article  ADS  Google Scholar 

  18. Geier, S. et al. Floquet Hamiltonian engineering of an isolated many-body spin system. Science 374, 1149–1152 (2021).

    Article  ADS  Google Scholar 

  19. Scholl, P. et al. Microwave engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms. PRXQuantum 3, 020303 (2022).

    ADS  Google Scholar 

  20. Stamper-Kurn, D. M. & Ueda, M. Spinor Bose gases: symmetries, magnetism and quantum dynamics. Rev. Mod. Phys. 85, 1191–1244 (2013).

    Article  ADS  Google Scholar 

  21. Uchino, S. Spinor Bose gas in an elongated trap. Phys. Rev. A 91, 033605 (2015).

    Article  ADS  Google Scholar 

  22. Navon, N., Smith, R. P. & Hadzibabic, Z. Quantum gases in optical boxes. Nat. Phys. 17, 1334–1341 (2021).

    Article  Google Scholar 

  23. Gerbier, F., Widera, A., Fölling, S., Mandel, O. & Bloch, I. Resonant control of spin dynamics in ultracold quantum gases by microwave dressing. Phys. Rev. A 73, 041602 (2006).

    Article  ADS  Google Scholar 

  24. Kunkel, P. et al. Simultaneous readout of noncommuting collective spin observables beyond the standard quantum limit. Phys. Rev. Lett. 123, 063603 (2019).

    Article  ADS  Google Scholar 

  25. Prüfer, M. et al. Experimental extraction of the quantum effective action for a non-equilibrium many-body system. Nat. Phys. 16, 1012–1016 (2020).

    Article  Google Scholar 

  26. Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M. & Stamper-Kurn, D. M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate. Nature 443, 312–315 (2006).

    Article  ADS  Google Scholar 

  27. Kawaguchi, Y. & Ueda, M. Spinor Bose-Einstein condensates. Phys. Rep. 520, 253–381 (2012).

    Article  MathSciNet  ADS  Google Scholar 

  28. Glauber, R. J. The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  29. Köhl, M., Davis, M. J., Gardiner, C. W., Hänsch, T. W. & Esslinger, T. Growth of Bose-Einstein condensates from thermal vapor. Phys. Rev. Lett. 88, 080402 (2002).

    Article  ADS  Google Scholar 

  30. Ritter, S. et al. Observing the formation of long-range order during Bose-Einstein condensation. Phys. Rev. Lett. 98, 090402 (2007).

    Article  ADS  Google Scholar 

  31. Kunkel, P. et al. Detecting entanglement structure in continuous many-body quantum systems. Phys. Rev. Lett. 128, 020402 (2022).

    Article  ADS  Google Scholar 

  32. Naraschewski, M. & Glauber, R. J. Spatial coherence and density correlations of trapped Bose gases. Phys. Rev. A 59, 4595–4607 (1999).

    Article  ADS  Google Scholar 

  33. Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005).

    Article  ADS  Google Scholar 

  34. Hodgman, S. S., Dall, R. G., Manning, A. G., Baldwin, K. G. H. & Truscott, A. G. Direct measurement of long-range third-order coherence in Bose-Einstein condensates. Science 331, 1046–1049 (2011).

    Article  ADS  Google Scholar 

  35. Perrin, A. et al. Hanbury-Brown and Twiss correlations across the Bose-Einstein condensation threshold. Nat. Phys. 8, 195–198 (2012).

    Article  Google Scholar 

  36. Cayla, H. et al. Hanbury-Brown and Twiss bunching of phonons and of the quantum depletion in a strongly-interacting Bose gas. Phys. Rev. Lett. 125, 165301 (2020).

    Article  ADS  Google Scholar 

  37. Landau, L. Theory of the superfluidity of helium II. Phys. Rev. 60, 356–358 (1941).

    Article  MATH  ADS  Google Scholar 

  38. Raman, C. et al. Evidence for a critical velocity in a Bose-Einstein condensed gas. Phys. Rev. Lett. 83, 2502–2505 (1999).

    Article  ADS  Google Scholar 

  39. Weimer, W. et al. Critical velocity in the BEC-BCS crossover. Phys. Rev. Lett. 114, 095301 (2015).

    Article  ADS  Google Scholar 

  40. Kim, J. H., Hong, D. & Shin, Y. Observation of two sound modes in a binary superfluid gas. Phys. Rev. A 101, 061601 (2020).

    Article  ADS  Google Scholar 

  41. Recati, A. & Piazza, F. Breaking of Goldstone modes in a two-component Bose-Einstein condensate. Phys. Rev. B 99, 064505 (2019).

    Article  ADS  Google Scholar 

  42. Cominotti, R. et al. Observation of massless and massive collective excitations with faraday patterns in a two-component superfluid. Phys. Rev. Lett. 21, 10401 (2022).

    Google Scholar 

  43. Betz, T. et al. Two-point phase correlations of a one-dimensional bosonic Josephson junction. Phys. Rev. Lett. 106, 020407 (2011).

    Article  ADS  Google Scholar 

  44. Bogoliubov, N. On the theory of superfluidity. J. Phys. 11, 23–32 (1947).

    MathSciNet  Google Scholar 

  45. Uchino, S., Kobayashi, M. & Ueda, M. Bogoliubov theory and Lee-Huang-Yang corrections in spin-1 and spin-2 Bose-Einstein condensates in the presence of the quadratic Zeeman effect. Phys. Rev. A 81, 063632 (2010).

    Article  ADS  Google Scholar 

  46. Phuc, N. T., Kawaguchi, Y. & Ueda, M. Effects of thermal and quantum fluctuations on the phase diagram of a spin-1 87Rb Bose-Einstein condensate. Phys. Rev. A 84, 043645 (2011).

    Article  ADS  Google Scholar 

  47. Kawaguchi, Y., Phuc, N. T. & Blakie, P. B. Finite-temperature phase diagram of a spin-1 Bose gas. Phys. Rev. A 85, 053611 (2012).

    Article  ADS  Google Scholar 

  48. Yu, X. & Blakie, P. B. Propagating ferrodark solitons in a superfluid: exact solutions and anomalous dynamics. Phys. Rev. Lett. 128, 125301 (2022).

    Article  MathSciNet  ADS  Google Scholar 

  49. Guzman, J. et al. Long-time-scale dynamics of spin textures in a degenerate F = 1 87Rb spinor Bose gas. Phys. Rev. A 84, 063625 (2011).

    Article  ADS  Google Scholar 

  50. Prüfer, M. et al. Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature 563, 217–220 (2018).

    Article  ADS  Google Scholar 

  51. Manz, S. et al. Two-point density correlations of quasicondensates in free expansion. Phys. Rev. A 81, 031610 (2010).

    Article  ADS  Google Scholar 

  52. Lannig, S. et al. Collisions of three-component vector solitons in Bose-Einstein condensates. Phys. Rev. Lett. 125, 170401 (2020).

    Article  ADS  Google Scholar 

  53. Symes, L. M., Baillie, D. & Blakie, P. B. Static structure factors for a spin-1 Bose-Einstein condensate. Phys. Rev. A 89, 053628 (2014).

    Article  ADS  Google Scholar 

  54. Kunkel, P. et al. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science 360, 413–416 (2018).

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Dreher for experimental assistance. This work is supported by ERC Advanced Grant Horizon 2020 EntangleGen (Project-ID 694561), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster) and the Collaborative Research Center, Project-ID 27381115, SFB 1225 ISOQUANT. M.P. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101032523.

Author information

Authors and Affiliations

Authors

Contributions

M.P., S.L. and H.S. took the measurement data. M.P., D.S., S.L., H.S. and M.K.O. discussed the measurement results and analysed the data. D.S., M.P. and J.B. elaborated the theoretical framework. All authors contributed to the discussion of the results and the writing of the manuscript.

Corresponding author

Correspondence to Maximilian Prüfer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Measurement of the gap by observation of temporal oscillations of the k = 0 mode.

a, We measure the gap of the quadratic spin mode by a global rotation of the spinor phase. We record the resulting oscillations of the fractional m = 0 population as a function of evolution time after the rotation. We fit a sinusoidal function (solid line) to infer the frequency. b, Extracted oscillation frequency (diamonds) and mean value of the m = 0 population (circles). We compare to theoretical expectations for the easy-plane phase (solid lines; see Methods equation 1). The dashed line extrapolates the expectations to q < 0 under the assumption of equal populations of m = ± 1. For the theory curves we use nc1 = 1.3Hz.

Extended Data Fig. 2 Histograms of local observables in the thermalized state.

Histograms obtained from evaluating the local observations of the experimental data presented in Fig. 4 (green bars). Here, each local observable is normalized to the square-root of the local mean of the total atom number. On top we display theoretical estimates from 1000 samples generated according to thermal Bogoliubov theory with parameters as in Fig. 4 (grey line; grey band indicates 68% confidence interval including statistical and systematic uncertainties). The mean value of each histogram is subtracted. For details on the sampling procedure see Methods.

Extended Data Fig. 3 Structure factor close to q = 0.

We show experimental power spectra of different spin and density degrees of freedom close to q = 0 (green diamonds). The grey diamonds represent the fluctuations of a coherent spin state with comparable atom numbers. We compare to thermal Bogoliubov theory predictions for the same parameters as displayed in Fig. 4 but with q = 0 (green line; grey band indicates 68% confidence interval of statistical and systematic uncertainties). Experimentally, we find that for momenta in the range of 0.02 μm−1 to 0.1 μm−1 the fluctuations are higher than for the thermal predictions for all observables (except the transversal spin F). The length scale of these fluctuations is in accordance with observable localized long-lived non-linear excitations which are not present in the thermalized data of Fig. 4.

Source data

Source Data Fig. 4

Source data, experiment (thermal state) and Bogoliubov.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prüfer, M., Spitz, D., Lannig, S. et al. Condensation and thermalization of an easy-plane ferromagnet in a spinor Bose gas. Nat. Phys. 18, 1459–1463 (2022). https://doi.org/10.1038/s41567-022-01779-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01779-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing