Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-classical light generated by quantum-noise-driven cavity optomechanics


Optomechanical systems1, in which light drives and is affected by the motion of a massive object, will comprise a new framework for nonlinear quantum optics, with applications ranging from the storage2,3,4 and transduction5,6 of quantum information to enhanced detection sensitivity in gravitational wave detectors7,8. However, quantum optical effects in optomechanical systems have remained obscure, because their detection requires the object’s motion to be dominated by vacuum fluctuations in the optical radiation pressure; so far, direct observations have been stymied by technical and thermal noise. Here we report an implementation of cavity optomechanics9,10 using ultracold atoms in which the collective atomic motion is dominantly driven by quantum fluctuations in radiation pressure. The back-action of this motion onto the cavity light field produces ponderomotive squeezing11,12. We detect this quantum phenomenon by measuring sub-shot-noise optical squeezing. Furthermore, the system acts as a low-power, high-gain, nonlinear parametric amplifier for optical fluctuations, demonstrating a gain of 20 dB with a pump corresponding to an average of only seven intracavity photons. These findings may pave the way for low-power quantum optical devices, surpassing quantum limits on position and force sensing13,14, and the control and measurement of motion in quantum gases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of cavity and heterodyne detection set-up.
Figure 2: Optomechanical transduction of classical amplitude modulation.
Figure 3: Ponderomotive squeezing and the optomechanical response to quantum radiation pressure fluctuations.


  1. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    Article  ADS  CAS  Google Scholar 

  2. Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011)

    Article  ADS  CAS  Google Scholar 

  3. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010)

    Article  ADS  CAS  Google Scholar 

  4. Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011)

    Article  ADS  CAS  Google Scholar 

  5. Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. N. J. Phys. 13, 013017 (2011)

    Article  Google Scholar 

  6. Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys. Conf. Ser. 264, 012025 (2011)

    Article  Google Scholar 

  7. Kimble, H. J., Levin, Y., Matsko, A. B., Thorne, K. S. & Vyatchanin, S. P. Conversion of conventional gravitational-wave interferometers into quantum non-demolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2001)

    Article  ADS  Google Scholar 

  8. Corbitt, T. et al. Squeezed-state source using radiation-pressure-induced rigidity. Phys. Rev. A 73, 023801 (2006)

    Article  ADS  Google Scholar 

  9. Gupta, S., Moore, K. L., Murch, K. W. & Stamper-Kurn, D. M. Cavity non-linear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett. 99, 213601 (2007)

    Article  ADS  Google Scholar 

  10. Brennecke, F., Ritter, S., Donner, T. & Esslinger, T. Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235–238 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Fabre, C. et al. Quantum-noise reduction using a cavity with a movable mirror. Phys. Rev. A 49, 1337–1343 (1994)

    Article  ADS  CAS  Google Scholar 

  12. Mancini, S. & Tombesi, P. Quantum noise reduction by radiation pressure. Phys. Rev. A 49, 4055–4065 (1994)

    Article  ADS  CAS  Google Scholar 

  13. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)

    Article  ADS  Google Scholar 

  14. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011)

    Article  ADS  CAS  Google Scholar 

  16. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Abbott, B. P. et al. An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature 460, 990–994 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Braginskii, V. B. & Manukin, A. B. Ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 24, 653–655 (1967)

    ADS  Google Scholar 

  19. Caves, C. M. Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75–79 (1980)

    Article  ADS  Google Scholar 

  20. Marino, F., Cataliotti, F. S., Farsi, A., de Cumis, M. S. & Marin, F. Classical signature of ponderomotive squeezing in a suspended mirror resonator. Phys. Rev. Lett. 104, 073601 (2010)

    Article  ADS  Google Scholar 

  21. Verlot, P., Tavernarakis, A., Briant, T., Cohadon, P.-F. & Heidmann, A. Backaction amplification and quantum limits in optomechanical measurements. Phys. Rev. Lett. 104, 133602 (2010)

    Article  ADS  CAS  Google Scholar 

  22. Botter, T., Brooks, D. W. C., Brahms, N., Schreppler, S. & Stamper-Kurn, D. M. Linear amplifier model for optomechanical systems. Phys. Rev. A 85, 013812 (2012)

    Article  ADS  Google Scholar 

  23. Nunnenkamp, A., Børkje, K. & Girvin, S. M. Single-photon optomechanics. Phys. Rev. Lett. 107, 063602 (2011)

    Article  ADS  CAS  Google Scholar 

  24. Rabl, P. Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011)

    Article  ADS  CAS  Google Scholar 

  25. Murch, K. W., Moore, K. L., Gupta, S. & Stamper-Kurn, D. M. Observation of quantum-measurement backaction with an ultracold atomic gas. Nature Phys. 4, 561–564 (2008)

    Article  CAS  Google Scholar 

  26. Purdy, T. P. et al. Tunable cavity optomechanics with ultracold atoms. Phys. Rev. Lett. 105, 133602 (2010)

    Article  ADS  CAS  Google Scholar 

  27. Brahms, N., Botter, T., Schreppler, S., Brooks, D. W. C. & Stamper-Kurn, D. M. Optical detection of the quantization of collective atomic motion. Phys. Rev. Lett. 108, 133601 (2012)

    Article  ADS  Google Scholar 

Download references


We acknowledge C. McLeod for assistance with the manuscript. This work was supported by the AFSOR and NSF. T.B. acknowledges support from the FQRNT.

Author information

Authors and Affiliations



T.P.P. contributed to the design of the experiment and the development of the theory. All other authors contributed to the design of the experiment, the development of the theory, data acquisition and analysis.

Corresponding author

Correspondence to Daniel W. C. Brooks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-7, Supplementary Table 1 and Supplementary References. This file was replaced on 06 September 2012 to correct a missing factor of 1/omega_m in the first relation of equation S4. (PDF 317 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brooks, D., Botter, T., Schreppler, S. et al. Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 488, 476–480 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing