Abstract
Optomechanical systems1, in which light drives and is affected by the motion of a massive object, will comprise a new framework for nonlinear quantum optics, with applications ranging from the storage2,3,4 and transduction5,6 of quantum information to enhanced detection sensitivity in gravitational wave detectors7,8. However, quantum optical effects in optomechanical systems have remained obscure, because their detection requires the object’s motion to be dominated by vacuum fluctuations in the optical radiation pressure; so far, direct observations have been stymied by technical and thermal noise. Here we report an implementation of cavity optomechanics9,10 using ultracold atoms in which the collective atomic motion is dominantly driven by quantum fluctuations in radiation pressure. The back-action of this motion onto the cavity light field produces ponderomotive squeezing11,12. We detect this quantum phenomenon by measuring sub-shot-noise optical squeezing. Furthermore, the system acts as a low-power, high-gain, nonlinear parametric amplifier for optical fluctuations, demonstrating a gain of 20 dB with a pump corresponding to an average of only seven intracavity photons. These findings may pave the way for low-power quantum optical devices, surpassing quantum limits on position and force sensing13,14, and the control and measurement of motion in quantum gases.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Impact of the central frequency of environment on non-Markovian dynamics in piezoelectric optomechanical devices
Scientific Reports Open Access 19 January 2021
-
Controllable Optical Bistability and Four-Wave Mixing in a Photonic-Molecule Optomechanics
Nanoscale Research Letters Open Access 01 March 2019
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.



References
Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)
Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011)
Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010)
Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011)
Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. N. J. Phys. 13, 013017 (2011)
Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys. Conf. Ser. 264, 012025 (2011)
Kimble, H. J., Levin, Y., Matsko, A. B., Thorne, K. S. & Vyatchanin, S. P. Conversion of conventional gravitational-wave interferometers into quantum non-demolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2001)
Corbitt, T. et al. Squeezed-state source using radiation-pressure-induced rigidity. Phys. Rev. A 73, 023801 (2006)
Gupta, S., Moore, K. L., Murch, K. W. & Stamper-Kurn, D. M. Cavity non-linear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett. 99, 213601 (2007)
Brennecke, F., Ritter, S., Donner, T. & Esslinger, T. Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235–238 (2008)
Fabre, C. et al. Quantum-noise reduction using a cavity with a movable mirror. Phys. Rev. A 49, 1337–1343 (1994)
Mancini, S. & Tombesi, P. Quantum noise reduction by radiation pressure. Phys. Rev. A 49, 4055–4065 (1994)
Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)
Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010)
Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011)
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)
Abbott, B. P. et al. An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature 460, 990–994 (2009)
Braginskii, V. B. & Manukin, A. B. Ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 24, 653–655 (1967)
Caves, C. M. Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75–79 (1980)
Marino, F., Cataliotti, F. S., Farsi, A., de Cumis, M. S. & Marin, F. Classical signature of ponderomotive squeezing in a suspended mirror resonator. Phys. Rev. Lett. 104, 073601 (2010)
Verlot, P., Tavernarakis, A., Briant, T., Cohadon, P.-F. & Heidmann, A. Backaction amplification and quantum limits in optomechanical measurements. Phys. Rev. Lett. 104, 133602 (2010)
Botter, T., Brooks, D. W. C., Brahms, N., Schreppler, S. & Stamper-Kurn, D. M. Linear amplifier model for optomechanical systems. Phys. Rev. A 85, 013812 (2012)
Nunnenkamp, A., Børkje, K. & Girvin, S. M. Single-photon optomechanics. Phys. Rev. Lett. 107, 063602 (2011)
Rabl, P. Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011)
Murch, K. W., Moore, K. L., Gupta, S. & Stamper-Kurn, D. M. Observation of quantum-measurement backaction with an ultracold atomic gas. Nature Phys. 4, 561–564 (2008)
Purdy, T. P. et al. Tunable cavity optomechanics with ultracold atoms. Phys. Rev. Lett. 105, 133602 (2010)
Brahms, N., Botter, T., Schreppler, S., Brooks, D. W. C. & Stamper-Kurn, D. M. Optical detection of the quantization of collective atomic motion. Phys. Rev. Lett. 108, 133601 (2012)
Acknowledgements
We acknowledge C. McLeod for assistance with the manuscript. This work was supported by the AFSOR and NSF. T.B. acknowledges support from the FQRNT.
Author information
Authors and Affiliations
Contributions
T.P.P. contributed to the design of the experiment and the development of the theory. All other authors contributed to the design of the experiment, the development of the theory, data acquisition and analysis.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Text and Data, Supplementary Figures 1-7, Supplementary Table 1 and Supplementary References. This file was replaced on 06 September 2012 to correct a missing factor of 1/omega_m in the first relation of equation S4. (PDF 317 kb)
Rights and permissions
About this article
Cite this article
Brooks, D., Botter, T., Schreppler, S. et al. Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 488, 476–480 (2012). https://doi.org/10.1038/nature11325
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature11325
This article is cited by
-
Optomechanics for quantum technologies
Nature Physics (2022)
-
Impact of the central frequency of environment on non-Markovian dynamics in piezoelectric optomechanical devices
Scientific Reports (2021)
-
Geometric discord in a dissipative double-cavity optomechanical system
Quantum Information Processing (2021)
-
Room-temperature optomechanical squeezing
Nature Physics (2020)
-
Optimal estimation of gravitation with Kerr nonlinearity in an optomechanical system
Quantum Information Processing (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.