Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The contribution of bone to whole-organism physiology

Abstract

The mouse genetic revolution has shown repeatedly that most organs have more functions than expected. This has led to the realization that, in addition to a molecular and cellular approach, there is a need for a whole-organism study of physiology. The skeleton is an example of how a whole-organism approach to physiology can broaden the functions of a given organ, reveal connections of this organ with others such as the brain, pancreas and gut, and shed new light on the pathogenesis of degenerative diseases affecting multiple organs.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Leptin co-regulates appetite and bone mass.
Figure 2: Osteocalcin, a bone-derived multifunctional hormone.
Figure 3: A feedforward loop links insulin, bone resorption and osteocalcin activity.
Figure 4: Interactions between the gastrointestinal tract and bone mass.

References

  1. Bernard, C. Introduction à l'Etude de la Médecine Expérimentale (Flammarion, 1865).

    Google Scholar 

  2. Gurney, C. W. Erythropoietin, erythropoiesis, and the kidney. J. Am. Med. Assoc. 173, 1828–1829 (1960).

    CAS  Article  Google Scholar 

  3. Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    ADS  CAS  PubMed  Article  Google Scholar 

  4. Chen, S. K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Cannon, W. B. The Wisdom of the Body (Norton, 1932).

    Book  Google Scholar 

  6. Monod, J. & Jacob, F. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26, 389–401 (1961).

    CAS  PubMed  Article  Google Scholar 

  7. Teitelbaum, S. L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  8. Ducy, P., Schinke, T. & Karsenty, G. The osteoblast: a sophisticated fibroblast under central surveillance. Science 289, 1501–1504 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  9. Legroux-Gerot, I., Vignau, J., Collier, F. & Cortet, B. Bone loss associated with anorexia nervosa. Joint Bone Spine 72, 489–495 (2005).

    PubMed  Article  Google Scholar 

  10. Misra, M. & Klibanski, A. The neuroendocrine basis of anorexia nervosa and its impact on bone metabolism. Neuroendocrinology 93, 65–73 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Riggs, B. L., Khosla, S. & Melton, L. J. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 13, 763–773 (1998).

    CAS  PubMed  Article  Google Scholar 

  12. Riggs, B. L. & Melton, L. J. Involutional osteoporosis. N. Engl. J. Med. 314, 1676–1686 (1986).

    CAS  PubMed  Article  Google Scholar 

  13. Hauschka, P. V., Lian, J. B., Cole, D. E. & Gundberg, C. M. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol. Rev. 69, 990–1047 (1989).

    CAS  PubMed  Article  Google Scholar 

  14. Oury, F. et al. Endocrine regulation of male fertility by the skeleton. Cell 144, 796–809 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007). This paper describes for the first time the endocrine function of bone.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994). This report describes the identification of the leptin gene.

    ADS  CAS  Article  PubMed  Google Scholar 

  17. Halaas, J. L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    ADS  CAS  PubMed  Article  Google Scholar 

  18. Chehab, F. F., Lim, M. E. & Lu, R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nature Genet. 12, 318–320 (1996).

    CAS  PubMed  Article  Google Scholar 

  19. Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000).

    CAS  PubMed  Article  Google Scholar 

  20. Pogoda, P. et al. Leptin inhibits bone formation not only in rodents, but also in sheep. J. Bone Miner. Res. 21, 1591–1599 (2006).

    CAS  PubMed  Article  Google Scholar 

  21. Elefteriou, F. et al. Serum leptin level is a regulator of bone mass. Proc. Natl Acad. Sci. USA 101, 3258–3263 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Gibson, W. T. et al. Congenital leptin deficiency due to homozygosity for the Δ133G mutation: report of another case and evaluation of response to four years of leptin therapy. J. Clin. Endocrinol. Metab. 89, 4821–4826 (2004).

    CAS  PubMed  Article  Google Scholar 

  23. Bjorbaek, C., Elmquist, J. K., Frantz, J. D., Shoelson, S. E. & Flier, J. S. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625 (1998).

    CAS  PubMed  Article  Google Scholar 

  24. Bjornholm, M. et al. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J. Clin. Invest. 117, 1354–1360 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Shi, Y. et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo . Proc. Natl Acad. Sci. USA 105, 20529–20533 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Baldock, P. A. et al. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS ONE 4, e8415 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Sato, S. et al. Central control of bone remodeling by neuromedin U. Nature Med. 13, 1234–1240 (2007).

    CAS  PubMed  Article  Google Scholar 

  28. Cornish, J. et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo . J. Endocrinol. 175, 405–415 (2002).

    CAS  PubMed  Article  Google Scholar 

  29. Bartell, S. M. et al. Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J. Bone Miner. Res. 26, 1710–1720 (2011).

    CAS  PubMed  Article  Google Scholar 

  30. Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305–317 (2002). This paper reports that leptin regulation of bone mass requires the sympathetic nervous system.

    CAS  PubMed  Article  Google Scholar 

  31. Yadav, V. K. et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138, 976–989 (2009). This study identifies brain serotonin as a critical mediator of the central action of leptin.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983–991 (2004).

    CAS  PubMed  Article  Google Scholar 

  33. Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191–203 (2006).

    CAS  Article  PubMed  Google Scholar 

  34. Warden, S. J. et al. Psychotropic drugs have contrasting skeletal effects that are independent of their effects on physical activity levels. Bone 46, 985–992 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Bliziotes, M. Update in serotonin and bone. J. Clin. Endocrinol. Metab. 95, 4124–4132 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Kaye, W., Gendall, K. & Strober, M. Serotonin neuronal function and selective serotonin reuptake inhibitor treatment in anorexia and bulimia nervosa. Biol. Psychiatry 44, 825–838 (1998).

    CAS  PubMed  Article  Google Scholar 

  37. Mann, J. J. et al. Relationship between central and peripheral serotonin indexes in depressed and suicidal psychiatric inpatients. Arch. Gen. Psychiatry 49, 442–446 (1992).

    CAS  PubMed  Article  Google Scholar 

  38. Walther, D. J. et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76 (2003). This report describes the cloning of the Tph2 gene, which is responsible for brain serotonin synthesis.

    CAS  PubMed  Article  Google Scholar 

  39. Oury, F. et al. CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev. 24, 2330–2342 (2010).

    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Yadav, V. K. et al. Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications. J. Exp. Med. 208, 41–52 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Lam, D. D. et al. Leptin does not directly affect CNS serotonin neurons to influence appetite. Cell Metab. 13, 584–591 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Elefteriou, F. et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514–520 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  43. Bonnet, N. et al. Protective effect of beta blockers in postmenopausal women: influence on fractures, bone density, micro and macroarchitecture. Bone 40, 1209–1216 (2007).

    CAS  PubMed  Article  Google Scholar 

  44. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23 . Nature Genet. 26, 345–348 (2000).10.1038/81664

  45. Hori, M., Shimizu, Y. & Fukumoto, S. Fibroblast growth factor 23 in phosphate homeostasis and bone metabolism. Endocrinology 152, 4–10 (2011).

    CAS  PubMed  Article  Google Scholar 

  46. Motyl, K. J., McCabe, L. R. & Schwartz, A. V. Bone and glucose metabolism: a two-way street. Arch. Biochem. Biophys. 503, 2–10 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Pollock, N. K. et al. Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with beta-cell function. J. Clin. Endocrinol. Metab. 96, E1092–E1099 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  48. Pi, M. et al. Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J. Biol. Chem. 280, 40201–40209 (2005).

    CAS  PubMed  Article  Google Scholar 

  49. Merle, B. & Delmas, P. D. Normal carboxylation of circulating osteocalcin (bone Gla-protein) in Paget's disease of bone. Bone Miner. 11, 237–245 (1990).

    CAS  PubMed  Article  Google Scholar 

  50. Ferron, M., Hinoi, E., Karsenty, G. & Ducy, P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl Acad. Sci. USA 105, 5266–5270 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. Ferron, M. et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142, 296–308 (2010). This study identifies a feed-forward loop linking insulin and osteocalcin.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Fulzele, K. et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142, 309–319 (2010). In this report, insulin signalling in osteoblasts is identified as a key regulator of bone mass and of energy metabolism.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Bluher, M. et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell 3, 25–38 (2002).

    CAS  PubMed  Article  Google Scholar 

  54. Bruning, J. C. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569 (1998).

    CAS  PubMed  Article  Google Scholar 

  55. Silver, I. A., Murrills, R. J. & Etherington, D. J. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 175, 266–276 (1988).

    CAS  PubMed  Article  Google Scholar 

  56. Poser, J. W. & Price, P. A. A method for decarboxylation of γ-carboxyglutamic acid in proteins. Properties of the decarboxylated γ-carboxyglutamic acid protein from calf bone. J. Biol. Chem. 254, 431–436 (1979).

    CAS  PubMed  Article  Google Scholar 

  57. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    ADS  CAS  Article  PubMed  Google Scholar 

  58. Delibegovic, M. et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 58, 590–599 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Delibegovic, M. et al. Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol. Cell. Biol. 27, 7727–7734 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Hinoi, E. et al. The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. J. Cell Biol. 183, 1235–1242 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Miheller, P., Lorinczy, K. & Lakatos, P. L. Clinical relevance of changes in bone metabolism in inflammatory bowel disease. World J. Gastroenterol. 16, 5536–5542 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  62. Rodriguez-Bores, L., Barahona-Garrido, J. & Yamamoto-Furusho, J. K. Basic and clinical aspects of osteoporosis in inflammatory bowel disease. World J. Gastroenterol. 13, 6156–6165 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Elefteriou, F. et al. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab. 4, 441–451 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Yang, X. et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry syndrome. Cell 117, 387–398 (2004).

    CAS  PubMed  Article  Google Scholar 

  65. Raisz, L. G. Stimulation of bone resorption by parathyroid hormone in tissue culture. Nature 197, 1015–1016 (1963).

    ADS  CAS  PubMed  Article  Google Scholar 

  66. Schinke, T. et al. Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nature Med. 15, 674–681 (2009).

    CAS  PubMed  Article  Google Scholar 

  67. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001). This paper identifies LRP5 as the gene mutated in OPPG.

    CAS  PubMed  Article  Google Scholar 

  68. Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002).

    CAS  PubMed  Article  Google Scholar 

  69. Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346, 1513–1521 (2002). This study identifies a mutation in LRP5 as causing HBM syndrome in humans.

    CAS  PubMed  Article  Google Scholar 

  70. Kato, M. et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol. 157, 303–314 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  72. Hay, E. et al. Interaction between LRP5 and Frat1 mediates the activation of the Wnt canonical pathway. J. Biol. Chem. 280, 13616–13623 (2005).

    CAS  PubMed  Article  Google Scholar 

  73. Tolwinski, N. S. et al. Wg/Wnt signal can be transmitted through Arrow/LRP5,6 and Axin independently of Zw3/Gsk3β activity. Dev. Cell 4, 407–418 (2003).

    CAS  PubMed  Article  Google Scholar 

  74. Li, X. et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280, 19883–19887 (2005).

    CAS  PubMed  Article  Google Scholar 

  75. Ye, X. et al. Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 139, 285–298 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Yadav, V. K. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825–837 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Jackson, A. et al. Gene array analysis of Wnt-regulated genes in C3H10T1/2 cells. Bone 36, 585–598 (2005).

    CAS  PubMed  Article  Google Scholar 

  78. Glass, D. A. et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751–764 (2005).

    CAS  PubMed  Article  Google Scholar 

  79. Kramer, I. et al. Osteocyte Wnt/β-catenin signaling is required for normal bone homeostasis. Mol. Cell. Biol. 30, 3071–3085 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  81. Cui, Y. et al. Lrp5 functions in bone to regulate bone mass. Nature Med. 17, 684–691 (2011).

    CAS  PubMed  Article  Google Scholar 

  82. Saarinen, A. et al. Low density lipoprotein receptor-related protein 5 (LRP5) mutations and osteoporosis, impaired glucose metabolism and hypercholesterolaemia. Clin. Endocrinol. 72, 481–488 (2010).

    CAS  Article  Google Scholar 

  83. Frost, M. et al. Patients with high-bone-mass phenotype owing to Lrp5-T253I mutation have low plasma levels of serotonin. J. Bone Miner. Res. 25, 673–675 (2010).

    CAS  PubMed  Article  Google Scholar 

  84. Frost, M. et al. Levels of serotonin, sclerostin, bone turnover markers as well as bone density and microarchitecture in patients with high bone mass phenotype due to a mutation in Lrp5. J. Bone Miner. Res. 26, 1721–1728 (2011).

    CAS  PubMed  Article  Google Scholar 

  85. Vilaca, T., Yamamoto, R. M., Carvalho, A. B. & Lazaretti-Castro, M. Neuroendocrine tumor associated with severe osteoporosis in a male patient. Endocr Rev, 32, abstr. P3-123 (2011)

    Google Scholar 

  86. Modder, U. I. et al. Relation of serum serotonin levels to bone density and structural parameters in women. J. Bone Miner. Res. 25, 415–422 (2010).

    CAS  PubMed  Article  Google Scholar 

  87. Shi, Z. C. et al. Modulation of peripheral serotonin levels by novel tryptophan hydroxylase inhibitors for the potential treatment of functional gastrointestinal disorders. J. Med. Chem. 51, 3684–3687 (2008).

    CAS  PubMed  Article  Google Scholar 

  88. Liu, Q. et al. Discovery and characterization of novel tryptophan hydroxylase inhibitors that selectively inhibit serotonin synthesis in the gastrointestinal tract. J. Pharmacol. Exp. Ther. 325, 47–55 (2008).

    CAS  PubMed  Article  Google Scholar 

  89. Inose, H. et al. Efficacy of serotonin inhibition in mouse models of bone loss. J. Bone Miner. Res. 26, 2002–2011 (2011).

    CAS  PubMed  Article  Google Scholar 

  90. Yadav, V. K. et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nature Med. 16, 308–312 (2010).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank T. Clemens, P. Ducy, M. Gershon, M. Kassem, S. Kousteni and members of the Karsenty laboratory for comments on the manuscript. We apologize to our colleagues whose work is not directly discussed and/or cited in this article because of space constraints. G.K. is supported by the National Institutes of Health, and M.F. by the Canadian Diabetes Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Karsenty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karsenty, G., Ferron, M. The contribution of bone to whole-organism physiology. Nature 481, 314–320 (2012). https://doi.org/10.1038/nature10763

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10763

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing