Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Basic amino-acid side chains regulate transmembrane integrin signalling

An Erratum to this article was published on 08 May 2013

Abstract

Side chains of Lys/Arg near transmembrane domain (TMD)1,2,3 membrane–water interfaces can ‘snorkel’, placing their positive charge near negatively charged phospholipid head groups4,5,6; however, snorkelling’s functional effects are obscure. Integrin β TMDs have such conserved basic amino acids. Here we use NMR spectroscopy7,8 to show that integrin β3(Lys 716) helps determine β3 TMD topography. The αΙΙbβ3 TMD structure indicates that precise β3 TMD crossing angles enable the assembly of outer and inner membrane ‘clasps’ that hold the αβ TMD together to limit transmembrane signalling9. Mutation of β3(Lys 716) caused dissociation of αΙΙbβ3 TMDs and integrin activation. To confirm that altered topography of β3(Lys 716) mutants activated αΙΙbβ3, we used directed evolution of β3(K716A) to identify substitutions restoring default state. Introduction of Pro(711) at the midpoint of β3 TMD (A711P) increased αΙΙbβ3 TMD association and inactivated integrin αΙΙbβ3(A711P,K716A). β3(Pro 711) introduced a TMD kink of 30 ± 1° precisely at the border of the outer and inner membrane clasps, thereby decoupling the tilt between these segments. Thus, widely occurring snorkelling residues in TMDs can help maintain TMD topography and membrane-embedding, thereby regulating transmembrane signalling.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Loss of snorkelling lysine changes lipid embedding of β 3 TMD.
Figure 2: Mutations in the snorkelling lysine induce integrin activation and disrupt α-β TMD interaction.
Figure 3: Directed evolution of the β 3 integrin to identfy mutations that complement the activating effect of snorkelling lysine mutation.
Figure 4: Proline introduced in the TMD forms a flexible kink that stabilizes the α ΙΙb β 3 (K716A) TMD interaction and reduces integrin activation.

References

  1. Killian, J. A. & von Heijne, G. How proteins adapt to a membrane–water interface. Trends Biochem. Sci. 25, 429–434 (2000)

    CAS  Article  Google Scholar 

  2. von Heijne, G. Membrane proteins: from sequence to structure. Annu. Rev. Biophys. Biomol. Struct. 23, 167–192 (1994)

    CAS  Article  Google Scholar 

  3. Sipos, L. & von Heijne, G. Predicting the topology of eukaryotic membrane proteins. Eur. J. Biochem. 213, 1333–1340 (1993)

    CAS  Article  Google Scholar 

  4. Krishnakumar, S. S. & London, E. The control of transmembrane helix transverse position in membranes by hydrophilic residues. J. Mol. Biol. 374, 1251–1269 (2007)

    CAS  Article  Google Scholar 

  5. Strandberg, E. & Killian, J. A. Snorkeling of lysine side chains in transmembrane helices: how easy can it get? FEBS Lett. 544, 69–73 (2003)

    CAS  Article  Google Scholar 

  6. Strandberg, E. et al. Lipid dependence of membrane anchoring properties and snorkeling behavior of aromatic and charged residues in transmembrane peptides. Biochemistry 41, 7190–7198 (2002)

    CAS  Article  Google Scholar 

  7. Lau, T. L., Partridge, A. W., Ginsberg, M. H. & Ulmer, T. S. Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles. Biochemistry 47, 4008–4016 (2008)

    CAS  Article  Google Scholar 

  8. Lau, T. L., Dua, V. & Ulmer, T. S. Structure of the integrin αIIb transmembrane segment. J. Biol. Chem. 283, 16162–16168 (2008)

    CAS  Article  Google Scholar 

  9. Lau, T. L., Kim, C., Ginsberg, M. H. & Ulmer, T. S. The structure of the integrin αIIbβ3 transmembrane complex explains integrin transmembrane signalling. EMBO J. 28, 1351–1361 (2009)

    CAS  Article  Google Scholar 

  10. Arnaout, M. A., Mahalingam, B. & Xiong, J. P. Integrin structure, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 21, 381–410 (2005)

    CAS  Article  Google Scholar 

  11. Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nature Rev. Mol. Cell Biol. 11, 288–300 (2010)

    CAS  Article  Google Scholar 

  12. Ginsberg, M. H., Partridge, A. & Shattil, S. J. Integrin regulation. Curr. Opin. Cell Biol. 17, 509–516 (2005)

    CAS  Article  Google Scholar 

  13. Stefansson, A., Armulik, A., Nilsson, I., von Heijne, G. & Johansson, S. Determination of N- and C-terminal borders of the transmembrane domain of integrin subunits. J. Biol. Chem. 279, 21200–21205 (2004)

    CAS  Article  Google Scholar 

  14. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002)

    CAS  Article  Google Scholar 

  15. Zhu, J. et al. Requirement of α and β subunit transmembrane helix separation for integrin outside-in signaling. Blood 110, 2475–2483 (2007)

    CAS  Article  Google Scholar 

  16. Kim, C., Lau, T. L., Ulmer, T. S. & Ginsberg, M. H. Interactions of platelet integrin αIIb and β3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood 113, 4747–4753 (2009)

    CAS  Article  Google Scholar 

  17. Shattil, S. J., Hoxie, J. A., Cunningham, M. & Brass, L. F. Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J. Biol. Chem. 260, 11107–11114 (1985)

    CAS  PubMed  Google Scholar 

  18. Zhu, J. et al. The structure of a receptor with two associating transmembrane domains on the cell surface: integrin αIIbβ3. Mol. Cell 34, 234–249 (2009)

    CAS  Article  Google Scholar 

  19. Frankel, A. D. & Young, J. A. HIV-1: fifteen proteins and an RNA. Annu. Rev. Biochem. 67, 1–25 (1998)

    CAS  Article  Google Scholar 

  20. Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003)

    ADS  CAS  Article  Google Scholar 

  21. Anthis, N. J. et al. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J. 28, 3623–3632 (2009)

    CAS  Article  Google Scholar 

  22. Senes, A., Engel, D. E. & DeGrado, W. F. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr. Opin. Struct. Biol. 14, 465–479 (2004)

    CAS  Article  Google Scholar 

  23. Berger, B. W. et al. Consensus motif for integrin transmembrane helix association. Proc. Natl Acad. Sci. USA 107, 703–708 (2010)

    ADS  CAS  Article  Google Scholar 

  24. Ye, F. et al. Recreation of the terminal events in physiological integrin activation. J. Cell Biol. 188, 157–173 (2010)

    CAS  Article  Google Scholar 

  25. Han, J. et al. Reconstructing and deconstructing agonist-induced activation of integrin αIIbβ3. Curr. Biol. 16, 1796–1806 (2006)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health of the USA. T.S.U. acknowledges support from the National Institutes of Health (HL089726) and M.H.G. was supported by HL078784, HL57900 and AR27214. C.K. is a recipient of a postdoctoral fellowship from the American Institute for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by C.K. and M.H.G. All experiments with the exception of the NMR studies were performed by C.K. The NMR studies were conducted by T.S. under the supervision of T.S.U. E.C. and F.Y. contributed reagents. M.H.G. and C.K. wrote the paper, which was edited by T.S. and T.S.U.

Corresponding authors

Correspondence to Tobias S. Ulmer or Mark H. Ginsberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-10 with legends, and Supplementary Tables 1-3. (PDF 5072 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, C., Schmidt, T., Cho, EG. et al. Basic amino-acid side chains regulate transmembrane integrin signalling. Nature 481, 209–213 (2012). https://doi.org/10.1038/nature10697

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10697

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing