Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Resonances arising from hydrodynamic memory in Brownian motion

Abstract

Observation of the Brownian motion of a small probe interacting with its environment provides one of the main strategies for characterizing soft matter1,2,3,4. Essentially, two counteracting forces govern the motion of the Brownian particle. First, the particle is driven by rapid collisions with the surrounding solvent molecules, referred to as thermal noise. Second, the friction between the particle and the viscous solvent damps its motion. Conventionally, the thermal force is assumed to be random and characterized by a Gaussian white noise spectrum. The friction is assumed to be given by the Stokes drag, suggesting that motion is overdamped at long times in particle tracking experiments, when inertia becomes negligible. However, as the particle receives momentum from the fluctuating fluid molecules, it also displaces the fluid in its immediate vicinity. The entrained fluid acts back on the particle and gives rise to long-range correlations5,6. This hydrodynamic ‘memory’ translates to thermal forces, which have a coloured, that is, non-white, noise spectrum. One hundred years after Perrin’s pioneering experiments on Brownian motion7,8,9, direct experimental observation of this colour is still elusive10. Here we measure the spectrum of thermal noise by confining the Brownian fluctuations of a microsphere in a strong optical trap. We show that hydrodynamic correlations result in a resonant peak in the power spectral density of the sphere’s positional fluctuations, in strong contrast to overdamped systems. Furthermore, we demonstrate different strategies to achieve peak amplification. By analogy with microcantilever-based sensors11,12, our results reveal that the particle–fluid–trap system can be considered a nanomechanical resonator in which the intrinsic hydrodynamic backflow enhances resonance. Therefore, instead of being treated as a disturbance, details in thermal noise could be exploited for the development of new types of sensor and particle-based assay in lab-on-a-chip applications13,14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristic time scales of a Brownian particle confined by the three-dimensional (3D) harmonic potential of an optical trap.
Figure 2: The colour of thermal force.
Figure 3: Enhancing resonance and sensitivity to particle size.
Figure 4: Transition to the inertial regime.

Similar content being viewed by others

References

  1. Mason, T. G. & Weitz, D. A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74, 1250–1253 (1995)

    Article  CAS  ADS  Google Scholar 

  2. Nowak, A. P. et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424–428 (2002)

    Article  CAS  ADS  Google Scholar 

  3. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004)

    Article  CAS  ADS  Google Scholar 

  4. Chaudhuri, O., Parekh, S. H. & Fletcher, D. A. Reversible stress softening of actin networks. Nature 445, 295–298 (2007)

    Article  CAS  ADS  Google Scholar 

  5. Alder, B. J. & Wainwright, T. E. Velocity autocorrelations for hard spheres. Phys. Rev. Lett. 18, 988–990 (1967)

    Article  CAS  ADS  Google Scholar 

  6. Jeney, S., Lukic´, B., Kraus, J. A., Franosch, T. & Forró, L. Anisotropic memory effects in confined colloidal diffusion. Phys. Rev. Lett. 100, 240604 (2008)

    Article  ADS  Google Scholar 

  7. Perrin, J. Mouvement brownien et réalité moléculaire. Ann. Chim. Phys. 18, 1–114 (1909)

    Google Scholar 

  8. Perrin, J. Atoms Ch. 3–5 (Constable, 1920)

    Google Scholar 

  9. Hänggi, P. & Marchesoni, F. 100 years of Brownian motion. Chaos 15, 026101 (2005)

    Article  ADS  Google Scholar 

  10. Berg-Sørensen, K. & Flyvbjerg, H. The colour of thermal noise in classical Brownian motion: a feasibility study of direct experimental observation. N. J. Phys. 7, 38 (2005)

    Article  Google Scholar 

  11. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000)

    Article  CAS  ADS  Google Scholar 

  12. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007)

    Article  CAS  ADS  Google Scholar 

  13. Braeckmans, K., De Smedt, S. C., Leblans, M., Pauwels, R. & Demeester, J. Encoding microcarriers: present and future technologies. Nature Rev. Drug Discov. 1, 447–456 (2002)

    Article  CAS  Google Scholar 

  14. Craighead, H. Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387–393 (2006)

    Article  CAS  ADS  Google Scholar 

  15. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549–560 (1905)

    Article  Google Scholar 

  16. Wang, M. C. & Uhlenbeck, G. E. On the theory of the Brownian motion II. Rev. Mod. Phys. 17, 323–342 (1945)

    Article  MathSciNet  ADS  Google Scholar 

  17. Vladimirsky, V. & Terletzky, Y. A. Hydrodynamical theory of translational Brownian motion. Zh. Eksp. Theor. Fiz. 15, 258–263 (1945)

    MathSciNet  Google Scholar 

  18. Hinch, E. J. Application of the Langevin equation to fluid suspensions. J. Fluid Mech. 72, 499–511 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  19. Pralle, A., Prummer, M., Florin, E.-L., Stelzer, E. H. K. & Horber, J. K. H. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 44, 378–386 (1999)

    Article  CAS  Google Scholar 

  20. Jeney, S., Mor, F., Ko˝szali, R., Forró, L. & Moy, V. T. Monitoring ligand-receptor interactions by photonic force microscopy. Nanotechnology 21, 255102 (2010)

    Article  ADS  Google Scholar 

  21. Lukic´, B. et al. Motion of a colloidal particle in an optical trap. Phys. Rev. E 76, 011112 (2007)

    Article  ADS  Google Scholar 

  22. Berg-Sørensen, K. & Flyvbjerg, H. Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 75, 594–612 (2004)

    Article  ADS  Google Scholar 

  23. Clercx, H. J. H. & Schram, P. P. J. M. Brownian particles in shear flow and harmonic potentials: a study of long-time tails. Phys. Rev. A 46, 1942–1950 (1992)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  24. Huang, R. et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nature Phys. 7, 576–580 (2011)

    Article  CAS  ADS  Google Scholar 

  25. Di Leonardo, R. et al. Parametric resonance of optically trapped aerosols. Phys. Rev. Lett. 99, 010601 (2007)

    Article  CAS  ADS  Google Scholar 

  26. Bormuth, V. et al. Optical trapping of coated microspheres. Opt. Express 16, 13831–13844 (2008)

    Article  CAS  ADS  Google Scholar 

  27. Gompper, G., Ihle, T., Kroll, D. M. & Winkler, R. G. Advanced computer simulation approaches for soft matter sciences III. Adv. Polym. Sci. 221, 1–87 (2009)

    CAS  Google Scholar 

  28. Zerbe, C., Jung, P. & Hänggi, P. Brownian parametric oscillators. Phys. Rev. E 49, 3626–3635 (1994)

    Article  CAS  ADS  Google Scholar 

  29. Pedersen, L. & Flyvbjerg, H. Comment on “Direct measurement of the oscillation frequency in an optical-tweezers trap by parametric excitation”. Phys. Rev. Lett. 98, 189801 (2007)

    Article  ADS  Google Scholar 

  30. Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987)

    Article  CAS  ADS  Google Scholar 

  31. Peterman, E. J. G., van Dijk, M. A., Kapitein, L. C. & Schmidt, C. F. Extending the bandwidth of optical-tweezers interferometry. Rev. Sci. Instrum. 74, 3246–3249 (2003)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

S.J. acknowledges the Swiss National Science Foundation (SNF; grant nos 200021-113529 and 206021-121396). M.G. is supported by NCCR Nanoscale Science and the German Academic Exchange Service (DAAD) and F.M.M. is supported by the National Competence Center in Biomedical Imaging (NCCBI). M.B. and G.F. acknowledge support from the SNF (grant no. PP0022_119006). We thank W. Öffner and R. Ko˝szali for technical help and U. Aebi, B. U. Felderhof, H. Flyvbjerg, S. Melchionna, E. Sackmann and R. G. Winkler for discussions.

Author information

Authors and Affiliations

Authors

Contributions

T.F. and M.G. contributed to the planning of the experiments, designed parts of the data analysis software, derived the theory, fitted the theory to the data and interpreted the data. M.B. performed the simulations, analysed the numerical results and contributed to the fitting of the data. F.M.M. contributed to the optimization of the experimental set-up. M.B. and G.F. devised, implemented and tested the numerical simulations. L.F. contributed to the planning of the experiments. S.J. constructed and characterized the experimental set-up; designed, planned and carried out the experiments; designed the data analysis software; and interpreted the data. All authors contributed to, discussed and commented on the manuscript.

Corresponding author

Correspondence to Sylvia Jeney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1 – 7 with legends and additional references. (PDF 1943 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franosch, T., Grimm, M., Belushkin, M. et al. Resonances arising from hydrodynamic memory in Brownian motion. Nature 478, 85–88 (2011). https://doi.org/10.1038/nature10498

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10498

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing