Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heart regeneration

Abstract

Heart failure plagues industrialized nations, killing more people than any other disease. It usually results from a deficiency of specialized cardiac muscle cells known as cardiomyocytes, and a robust therapy to regenerate lost myocardium could help millions of patients every year. Heart regeneration is well documented in amphibia and fish and in developing mammals. After birth, however, human heart regeneration becomes limited to very slow cardiomyocyte replacement. Several experimental strategies to remuscularize the injured heart using adult stem cells and pluripotent stem cells, cellular reprogramming and tissue engineering are in progress. Although many challenges remain, these interventions may eventually lead to better approaches to treat or prevent heart failure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cardiovascular lineages during embryonic development and ESC differentiation.
Figure 2: Guided differentiation and phenotype of cardiomyocytes from pluripotent stem cells.
Figure 3: Grafts of human ESC-derived cardiomyocytes in the cryoinjured guinea-pig heart.

References

  1. 1

    Carvalho, A. B. & de Carvalho, A. C. Heart regeneration: past, present and future. World J. Cardiol. 2, 107–111 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Rumyantsev, P. P. in Muscle Regeneration (ed. Mauro, A.) 335–355 (Raven, 1979).

    Google Scholar 

  3. 3

    Rumyantsev, P. P. Growth and Hyperplasia of Cardiac Muscle Cells (Harwood Academic, 1991).

    Google Scholar 

  4. 4

    Murry, C. E., Reinecke, H. & Pabon, L. M. Regeneration gaps: observations on stem cells and cardiac repair. J. Am. Coll. Cardiol. 47, 1777–1785 (2006).

    PubMed  Article  Google Scholar 

  5. 5

    Whelan, R. S., Kaplinskiy, V. & Kitsis, R. N. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu. Rev. Physiol. 72, 19–44 (2010).

    PubMed  Article  CAS  Google Scholar 

  6. 6

    Olivetti, G., Melissari, M., Capasso, J. M. & Anversa, P. Cardiomyopathy of the aging human heart. Circ. Res. 68, 1560–1568 (1991).

    PubMed  Article  CAS  Google Scholar 

  7. 7

    Laflamme, M. A., Zbinden, S., Epstein, S. E. & Murry, C. E. Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu. Rev. Pathol. 2, 307–339 (2007).

    PubMed  Article  CAS  Google Scholar 

  8. 8

    Povsic, T. J. & O'Connor, C. M. Cell therapy for heart failure: the need for a new therapeutic strategy. Expert Rev. Cardiovasc. Ther. 8, 1107–1126 (2010).

    PubMed  Article  Google Scholar 

  9. 9

    Oberpriller, J. O. & Oberpriller, J. C. Response of the adult newt ventricle to injury. J. Exp. Zool. 187, 249–253 (1974).

    PubMed  Article  CAS  Google Scholar 

  10. 10

    Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    ADS  PubMed  Article  CAS  Google Scholar 

  11. 11

    Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  12. 12

    Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13

    Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010). References 12 and 13 demonstrate that heart regeneration in zebrafish is mediated by the proliferation of pre-existing cardiomyocytes, not by the mobilization of undifferentiated precursors.

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14

    Soonpaa, M. H. & Field, L. J. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res. 83, 15–26 (1998).

    PubMed  Article  CAS  Google Scholar 

  15. 15

    Soonpaa, M. H. & Field, L. J. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am. J. Physiol. 272, H220–H226 (1997).

    PubMed  CAS  Google Scholar 

  16. 16

    Hassink, R. J. et al. Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc. Res. 78, 18–25 (2008).

    PubMed  Article  CAS  Google Scholar 

  17. 17

    Ahuja, P., Sdek, P. & MacLellan, W. R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 87, 521–544 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18

    Kuhn, B. et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nature Med. 13, 962–969 (2007).

    PubMed  Article  CAS  Google Scholar 

  19. 19

    Engel, F. B., Hsieh, P. C., Lee, R. T. & Keating, M. T. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl Acad. Sci. USA 103, 15546–15551 (2006).

    ADS  PubMed  Article  CAS  Google Scholar 

  20. 20

    Bersell, K., Arab, S., Haring, B. & Kuhn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257–270 (2009). This study identifies neuregulin as a mitogen for cardiomyocytes, and shows that systemic NRG1 administration improves function in infarcted mouse hearts.

    PubMed  Article  CAS  Google Scholar 

  21. 21

    Lorts, A., Schwanekamp, J. A., Elrod, J. W., Sargent, M. A. & Molkentin, J. D. Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circ. Res. 104, e1–e7 (2009).

    PubMed  Article  CAS  Google Scholar 

  22. 22

    Hsieh, P. C. et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Med. 13, 970–974 (2007). These authors use transgenic mice and a genetic fate-mapping strategy to show that progenitor cells contribute to cardiomyocyte renewal after injury.

    PubMed  Article  CAS  Google Scholar 

  23. 23

    Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24

    Adler, C. P. Relationship between deoxyribonucleic acid content and nucleoli in human heart muscle cells and estimation of cell number during cardiac growth and hyperfunction. Recent Adv. Stud. Cardiac Struct. Metab. 8, 373–386 (1975). This study uses careful biochemical and cytophotometric techniques to determine cardiomyocyte number and DNA content in human hearts during normal ageing and disease.

    PubMed  CAS  Google Scholar 

  25. 25

    Adler, C. P. & Friedburg, H. Myocardial DNA content, ploidy level and cell number in geriatric hearts: post-mortem examinations of human myocardium in old age. J. Mol. Cell Cardiol. 18, 39–53 (1986).

    PubMed  Article  CAS  Google Scholar 

  26. 26

    Li, F., Wang, X., Capasso, J. M. & Gerdes, A. M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell Cardiol. 28, 1737–1746 (1996).

    PubMed  Article  CAS  Google Scholar 

  27. 27

    Olivetti, G. et al. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J. Mol. Cell Cardiol. 28, 1463–1477 (1996).

    PubMed  Article  CAS  Google Scholar 

  28. 28

    MacMahon, H. E. Hyperplasia and regeneration of the myocardium in infants and in children. Am. J. Pathol. 13, 845–854 (1937).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. 29

    Beltrami, A. P. et al. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 344, 1750–1757 (2001).

    PubMed  Article  CAS  Google Scholar 

  30. 30

    Rumyantsev, P. P. in Growth and Hyperplasia of Cardiac Muscle Cells (ed. Carlson, B. M.) 210–238 (Harwood Academic Publishers, 1991).

    Google Scholar 

  31. 31

    Adler, C. P. & Costabel, U. Cell number in human heart in atrophy, hypertrophy, and under the influence of cytostatics. Recent Adv. Stud. Cardiac Struct. Metab. 6, 343–355 (1975).

    PubMed  CAS  Google Scholar 

  32. 32

    Herget, G. W., Neuburger, M., Plagwitz, R. & Adler, C. P. DNA content, ploidy level and number of nuclei in the human heart after myocardial infarction. Cardiovasc. Res. 36, 45–51 (1997).

    PubMed  Article  CAS  Google Scholar 

  33. 33

    Grajek, S. et al. Hypertrophy or hyperplasia in cardiac muscle. Eur. Heart J. 14, 40–47 (1993).

    PubMed  Article  CAS  Google Scholar 

  34. 34

    Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009). In this study, the authors took advantage of the global pulse of 14C during the cold war and estimated a rate of cardiomyocyte renewal in human hearts of up to 1% per year.

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35

    Kajstura, J. et al. Cardiomyogenesis in the adult human heart. Circ. Res. 107, 305–315 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36

    Bergmann, O. et al. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp. Cell Res. 317, 188–194 (2010).

    PubMed  Article  CAS  Google Scholar 

  37. 37

    Kinsella, T. J. et al. A phase I study of intermittent intravenous bromodeoxyuridine (BUdR) with conventional fractionated irradiation. Int. J. Radiat. Oncol. Biol. Phys. 10, 69–76 (1984).

    PubMed  Article  CAS  Google Scholar 

  38. 38

    Segers, V. F. & Lee, R. T. Stem-cell therapy for cardiac disease. Nature 451, 937–942 (2008).

    ADS  PubMed  Article  CAS  Google Scholar 

  39. 39

    Passier, R., van Laake, L. W. & Mummery, C. L. Stem-cell-based therapy and lessons from the heart. Nature 453, 322–329 (2008).

    ADS  PubMed  Article  CAS  Google Scholar 

  40. 40

    Smith, R. R. et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896–908 (2007).

    PubMed  Article  CAS  Google Scholar 

  41. 41

    Pfister, O. et al. Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ. Res. 103, 825–835 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42

    Tallini, Y. N. et al. c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc. Natl Acad. Sci. USA 106, 1808–1813 (2009).

    ADS  PubMed  Article  Google Scholar 

  43. 43

    Kubo, H. et al. Increased cardiac myocyte progenitors in failing human hearts. Circulation 118, 649–657 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Bearzi, C. et al. Human cardiac stem cells. Proc. Natl Acad. Sci. USA 104, 14068–14073 (2007). This study describes the isolation of c-KIT+ CPCs from human hearts, and reports their differentiation into cardiomyocytes and vascular elements both in vitro and after transplantation.

    ADS  PubMed  Article  CAS  Google Scholar 

  45. 45

    Tang, X. L. et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121, 293–305 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Zaruba, M. M., Soonpaa, M., Reuter, S. & Field, L. J. Cardiomyogenic potential of c-kit+-expressing cells derived from neonatal and adult mouse hearts. Circulation 121, 1992–2000 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47

    Patella, V. et al. Stem cell factor in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy. Circulation 97, 971–978 (1998).

    PubMed  Article  CAS  Google Scholar 

  48. 48

    Sandstedt, J., Jonsson, M., Lindahl, A., Jeppsson, A. & Asp, J. C-kit+ CD45 cells found in the adult human heart represent a population of endothelial progenitor cells. Basic Res. Cardiol. 105, 545–556 (2010).

    PubMed  Article  Google Scholar 

  49. 49

    Messina, E. et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 95, 911–921 (2004).

    PubMed  Article  CAS  Google Scholar 

  50. 50

    Chimenti, I. et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ. Res. 106, 971–980 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51

    Andersen, D. C., Andersen, P., Schneider, M., Jensen, H. B. & Sheikh, S. P. Murine 'cardiospheres' are not a source of stem cells with cardiomyogenic potential. Stem Cells 27, 1571–1581 (2009).

    PubMed  Article  Google Scholar 

  52. 52

    Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  53. 53

    Murry, C. E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  54. 54

    Balsam, L. B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–673 (2004).

    ADS  Article  CAS  PubMed  Google Scholar 

  55. 55

    Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J. & Kessler, P. D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98 (2002).

    PubMed  Article  Google Scholar 

  56. 56

    Mirotsou, M. et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc. Natl Acad. Sci. USA 104, 1643–1648 (2007).

    ADS  PubMed  Article  CAS  Google Scholar 

  57. 57

    Hatzistergos, K. E. et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ. Res. 107, 913–922 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58

    Chen, S. L. et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol. 94, 92–95 (2004).

    PubMed  Article  Google Scholar 

  59. 59

    Hare, J. M. et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 54, 2277–2286 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60

    Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61

    Sartiani, L. et al. Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 25, 1136–1144 (2007).

    PubMed  Article  CAS  Google Scholar 

  62. 62

    He, J. Q., Ma, Y., Lee, Y., Thomson, J. A. & Kamp, T. J. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res. 93, 32–39 (2003).

    PubMed  Article  CAS  Google Scholar 

  63. 63

    Zhu, W. Z., Santana, L. F. & Laflamme, M. A. Local control of excitation-contraction coupling in human embryonic stem cell-derived cardiomyocytes. PLoS ONE 4, e5407 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64

    Zhang, J. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30–e41 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  65. 65

    Zwi, L. et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120, 1513–1523 (2009).

    PubMed  Article  CAS  Google Scholar 

  66. 66

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    ADS  PubMed  Article  CAS  Google Scholar 

  67. 67

    Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    PubMed  Article  CAS  Google Scholar 

  68. 68

    Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    ADS  PubMed  Article  CAS  Google Scholar 

  70. 70

    Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71

    Shi, Y. et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568–574 (2008).

    PubMed  Article  CAS  Google Scholar 

  72. 72

    Nussbaum, J. et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 21, 1345–1357 (2007).

    PubMed  Article  CAS  Google Scholar 

  73. 73

    Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74

    Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnol. 25, 1015–1024 (2007). This study describes methods for guiding the differentiation of human ESCs into cardiomyocytes, and shows that transplantation of these cells improves function in a rat infarct model.

    Article  CAS  Google Scholar 

  75. 75

    Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528 (2008). This paper describes the guided differentiation and isolation of multipotent cardiovascular progenitor cells from human ESCs.

    ADS  PubMed  Article  CAS  Google Scholar 

  76. 76

    Xu, X. Q. et al. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76, 958–970 (2008).

    PubMed  Article  CAS  Google Scholar 

  77. 77

    Zhu, W. Z. et al. Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ. Res. 107, 776–786 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78

    Paige, S. L. et al. Endogenous Wnt/β-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS ONE 5, e11134 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79

    Ueno, S. et al. Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 9685–9690 (2007).

    ADS  Article  CAS  PubMed  Google Scholar 

  80. 80

    Bondue, A. et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3, 69–84 (2008).

    PubMed  Article  CAS  Google Scholar 

  81. 81

    Wu, S. M. et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127, 1137–1150 (2006).

    PubMed  Article  CAS  Google Scholar 

  82. 82

    Moretti, A. et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165 (2006).

    PubMed  Article  CAS  Google Scholar 

  83. 83

    Domian, I. J. et al. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326, 426–429 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. 84

    Caspi, O. et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol. 50, 1884–1893 (2007).

    PubMed  Article  Google Scholar 

  85. 85

    Fernandes, S. et al. Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. J. Mol. Cell Cardiol. 49, 941–949 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. 86

    van Laake, L. W., Passier, R., Doevendans, P. A. & Mummery, C. L. Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ. Res. 102, 1008–1010 (2008).

    PubMed  Article  CAS  Google Scholar 

  87. 87

    Murry, C. E., Kay, M. A., Bartosek, T., Hauschka, S. D. & Schwartz, S. M. Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J. Clin. Invest. 98, 2209–2217 (1996).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88

    Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010). This study describes the direct reprogramming of cardiac fibroblasts to a cardiomyocyte-like state by the forced expression of three cardiac transcription factors.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89

    Efe, J. A. et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biol. 13, 215–222 (2011).

    PubMed  Article  CAS  Google Scholar 

  90. 90

    Ratner, B. D. & Bryant, S. J. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41–75 (2004).

    PubMed  Article  CAS  Google Scholar 

  91. 91

    Madden, L. R. et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA 107, 15211–15216 (2010).

    ADS  PubMed  Article  Google Scholar 

  92. 92

    Radisic, M. et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl Acad. Sci. USA 101, 18129–18134 (2004).

    ADS  PubMed  Article  CAS  Google Scholar 

  93. 93

    Zimmermann, W. H. et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Med. 12, 452–458 (2006). This paper describes the formation of engineered heart tissue using neonatal rat cardiomyocytes, and shows that their implantation improves electrical and mechanical function in injured hearts.

    PubMed  Article  CAS  Google Scholar 

  94. 94

    Reinecke, H., Zhang, M., Bartosek, T. & Murry, C. E. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100, 193–202 (1999).

    PubMed  Article  CAS  Google Scholar 

  95. 95

    Stevens, K. R. et al. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc. Natl Acad. Sci. USA 106, 16568–16573 (2009).

    ADS  PubMed  Article  Google Scholar 

  96. 96

    Caspi, O. et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100, 263–272 (2007).

    ADS  PubMed  Article  CAS  Google Scholar 

  97. 97

    Dvir, T. et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc. Natl Acad. Sci. USA 106, 14990–14995 (2009).

    ADS  PubMed  Article  Google Scholar 

  98. 98

    Zakharova, L. et al. Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovasc Res. 87, 40–49 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99

    Brodsky, V. Y., Chernyaev, A. L. & Vasilyeva, I. A. Variability of the cardiomyocyte ploidy in normal human hearts. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 61, 289–294 (1991).

    PubMed  Article  Google Scholar 

  100. 100

    Rumyantsev, P. P., Erokhina, I. L., Antipanova, E. M. & Martynova, M. G. DNA and sex chromatin content in nuclei of conductive system and working myocytes of normal and hypertrophied human heart. Acta Histochem. Suppl. 39, 225–237 (1990).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank our many colleagues whose useful discussions and work contributed to the material presented here. This work was supported by grants from the US National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles E. Murry.

Ethics declarations

Competing interests

C.E.M. has a sponsored research agreement with Surmodics; M.A.L. had a sponsored research agreement with Geron that expired on 28 February 2011.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Laflamme, M., Murry, C. Heart regeneration. Nature 473, 326–335 (2011). https://doi.org/10.1038/nature10147

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing