Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Animal models to study cardiac regeneration

Abstract

Permanent fibrosis and chronic deterioration of heart function in patients after myocardial infarction present a major health-care burden worldwide. In contrast to the restricted potential for cellular and functional regeneration of the adult mammalian heart, a robust capacity for cardiac regeneration is seen during the neonatal period in mammals as well as in the adults of many fish and amphibian species. However, we lack a complete understanding as to why cardiac regeneration takes place more efficiently in some species than in others. The capacity of the heart to regenerate after injury is controlled by a complex network of cellular and molecular mechanisms that form a regulatory landscape, either permitting or restricting regeneration. In this Review, we provide an overview of the diverse array of vertebrates that have been studied for their cardiac regenerative potential and discuss differential heart regeneration outcomes in closely related species. Additionally, we summarize current knowledge about the core mechanisms that regulate cardiac regeneration across vertebrate species.

Key points

  • Cardiac regeneration potential tends to be robust in fish, amphibians and neonatal mammals, but is restricted in adult mammals; however, cardiac regeneration potential in several model organisms defies this trend.

  • Cardiac regeneration potential is determined by multiple highly interconnected processes, including cardiomyocyte proliferation, cardiac fibrosis, neovascularization, immune response and energy metabolism.

  • Mammalian cardiomyocytes exit the cell cycle postnatally due to changes in structure and energy metabolism; partial in vivo reprogramming of adult mammalian cardiomyocytes can increase their proliferation capacity.

  • Fibrosis in the injured heart is both beneficial and detrimental; altering fibrotic tissue composition and mechanical properties might improve adult mammalian heart regeneration.

  • Rapid neovascularization of the wound is a hallmark of heart regeneration and is absent in the adult mammalian heart; lymphatic coronary vessels modify the immune response after myocardial infarction via immune cell clearance.

  • The immune response to cardiac injury consists of multiple phases; restricting the initial inflammatory phase and promoting the subsequent reparative phase represents a strategy to improve heart regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heart regeneration potential across vertebrate species.
Fig. 2: Key studies on animal models of heart regeneration.
Fig. 3: Cardiac characteristics associated with differential heart regeneration potential in closely related species.
Fig. 4: Mechanisms that control heart regeneration potential.

Similar content being viewed by others

References

  1. Tsao, C. W. et al. Heart disease and stroke statistics – 2023 update: a report from the American Heart Association. Circulation 147, e93–e621 (2023).

    Article  PubMed  Google Scholar 

  2. Frangogiannis, N. G. Pathophysiology of myocardial infarction. Compr. Physiol. 5, 1841–1875 (2015).

    Article  PubMed  Google Scholar 

  3. Parikh, N. I. et al. Long-term trends in myocardial infarction incidence and case fatality in the National Heart, Lung, and Blood Institute’s Framingham Heart study. Circulation 119, 1203–1210 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kong, P., Christia, P. & Frangogiannis, N. G. The pathogenesis of cardiac fibrosis. Cell Mol. Life Sci. 71, 549–574 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Cano-Martinez, A. et al. Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation. Arch. Cardiol. Mex. 80, 79–86 (2010).

    PubMed  Google Scholar 

  7. Stockdale, W. T. et al. Heart regeneration in the Mexican cavefish. Cell Rep. 25, 1997–2007.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haubner, B. J. et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 4, 966–977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nishiyama, C. et al. Prolonged myocardial regenerative capacity in neonatal opossum. Circulation 146, 125–139 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Raya, A. et al. Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc. Natl Acad. Sci. USA 100, 11889–11895 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chablais, F., Veit, J., Rainer, G. & Jazwinska, A. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev. Biol. 11, 21 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gonzalez-Rosa, J. M., Martin, V., Peralta, M., Torres, M. & Mercader, N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138, 1663–1674 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Schnabel, K., Wu, C. C., Kurth, T. & Weidinger, G. Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS ONE 6, e18503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, J. et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138, 3421–3430 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parente, V. et al. Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart. PLoS ONE 8, e53748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dyck, P. K. V. et al. Cauterization as a simple method for regeneration studies in the zebrafish heart. J. Cardiovasc. Dev. Dis. 7, 41 (2020).

    PubMed  PubMed Central  Google Scholar 

  18. Bertozzi, A. et al. Is zebrafish heart regeneration “complete”? Lineage-restricted cardiomyocytes proliferate to pre-injury numbers but some fail to differentiate in fibrotic hearts. Dev. Biol. 471, 106–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Rosa, J. M. et al. Use of echocardiography reveals reestablishment of ventricular pumping efficiency and partial ventricular wall motion recovery upon ventricular cryoinjury in the zebrafish. PLoS ONE 9, e115604 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Itou, J., Kawakami, H., Burgoyne, T. & Kawakami, Y. Life-long preservation of the regenerative capacity in the fin and heart in zebrafish. Biol. Open 1, 739–746 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reuter, H. et al. Aging activates the immune system and alters the regenerative capacity in the zebrafish heart. Cells 11, 345 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lafontant, P. J. et al. The giant danio (D. aequipinnatus) as a model of cardiac remodeling and regeneration. Anat. Rec. 295, 234–248 (2012).

    Article  Google Scholar 

  23. Grivas, J. et al. Cardiac repair and regenerative potential in the goldfish (Carassius auratus) heart. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 163, 14–23 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, W. et al. Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science 369, eaaz3090 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kikuchi, K. et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 20, 397–404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao, S. et al. Heart regeneration in adult Xenopus tropicalis after apical resection. Cell Biosci. 7, 70 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu, H. Y. et al. Fosl1 is vital to heart regeneration upon apex resection in adult Xenopus tropicalis. NPJ Regen. Med. 6, 36 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Godwin, J. W., Debuque, R., Salimova, E. & Rosenthal, N. A. Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. NPJ Regen. Med. 2, 22 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Flink, I. L. Cell cycle reentry of ventricular and atrial cardiomyocytes and cells within the epicardium following amputation of the ventricular apex in the axolotl, Amblystoma mexicanum: confocal microscopic immunofluorescent image analysis of bromodeoxyuridine-labeled nuclei. Anat. Embryol. 205, 235–244 (2002).

    Article  Google Scholar 

  30. Vargas-Gonzalez, A., Prado-Zayago, E., Leon-Olea, M., Guarner-Lans, V. & Cano-Martinez, A. Myocardial regeneration in Ambystoma mexicanum after surgical injury [Spanish]. Arch. Cardiol. Mex. 75 (Suppl. 3), 21–29 (2005).

    Google Scholar 

  31. Oberpriller, J. O. & Oberpriller, J. C. Response of the adult newt ventricle to injury. J. Exp. Zool. 187, 249–253 (1974).

    Article  CAS  PubMed  Google Scholar 

  32. Bader, D. & Oberpriller, J. O. Repair and reorganization of minced cardiac muscle in the adult newt (Notophthalmus viridescens). J. Morphol. 155, 349–357 (1978).

    Article  CAS  PubMed  Google Scholar 

  33. Witman, N., Murtuza, B., Davis, B., Arner, A. & Morrison, J. I. Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev. Biol. 354, 67–76 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Piatkowski, T., Muhlfeld, C., Borchardt, T. & Braun, T. Reconstitution of the myocardium in regenerating newt hearts is preceded by transient deposition of extracellular matrix components. Stem Cell Dev. 22, 1921–1931 (2013).

    Article  CAS  Google Scholar 

  35. Laube, F., Heister, M., Scholz, C., Borchardt, T. & Braun, T. Re-programming of newt cardiomyocytes is induced by tissue regeneration. J. Cell Sci. 119, 4719–4729 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Uemasu, H. et al. Cryo-injury procedure-induced cardiac regeneration shows unique gene expression profiles in the newt Pleurodeles waltl. Dev. Dyn. 251, 864–876 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Eroglu, E. et al. Epicardium-derived cells organize through tight junctions to replenish cardiac muscle in salamanders. Nat. Cell Biol. 24, 645–658 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laflamme, M. A. & Murry, C. E. Heart regeneration. Nature 473, 326–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Porrello, E. R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA 110, 187–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Darehzereshki, A. et al. Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev. Biol. 399, 91–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Notari, M. et al. The local microenvironment limits the regenerative potential of the mouse neonatal heart. Sci. Adv. 4, eaao5553 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. van Amerongen, M. J., Harmsen, M. C., Petersen, A. H., Popa, E. R. & van Luyn, M. J. Cryoinjury: a model of myocardial regeneration. Cardiovasc. Pathol. 17, 23–31 (2008).

    Article  PubMed  Google Scholar 

  43. Leferovich, J. M. et al. Heart regeneration in adult MRL mice. Proc. Natl Acad. Sci. USA 98, 9830–9835 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oh, Y. S. et al. Scar formation after ischemic myocardial injury in MRL mice. Cardiovasc. Pathol. 13, 203–206 (2004).

    Article  PubMed  Google Scholar 

  45. Abdullah, I., Lepore, J. J., Epstein, J. A., Parmacek, M. S. & Gruber, P. J. MRL mice fail to heal the heart in response to ischemia-reperfusion injury. Wound Repair. Regen. 13, 205–208 (2005).

    Article  PubMed  Google Scholar 

  46. Robey, T. E. & Murry, C. E. Absence of regeneration in the MRL/MpJ mouse heart following infarction or cryoinjury. Cardiovasc. Pathol. 17, 6–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Grisel, P. et al. The MRL mouse repairs both cryogenic and ischemic myocardial infarcts with scar. Cardiovasc. Pathol. 17, 14–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Cimini, M. et al. The MRL mouse heart does not recover ventricular function after a myocardial infarction. Cardiovasc. Pathol. 17, 32–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, H. et al. Natural heart regeneration in a neonatal rat myocardial infarction model. Cells 9, 229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zogbi, C. et al. Early postnatal rat ventricle resection leads to long-term preserved cardiac function despite tissue hypoperfusion. Physiol. Rep. 2, e12115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shiba, Y. et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489, 322–325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, H. et al. A neonatal leporine model of age-dependent natural heart regeneration after myocardial infarction. J. Thorac. Cardiovasc. Surg. 164, e389–e405 (2022).

    Article  PubMed  Google Scholar 

  53. Haubner, B. J. et al. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ. Res. 118, 216–221 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Cesna, S., Eicken, A., Juenger, H. & Hess, J. Successful treatment of a newborn with acute myocardial infarction on the first day of life. Pediatr. Cardiol. 34, 1868–1870 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Deutsch, M. A. et al. Successful management of neonatal myocardial infarction with ECMO and intracoronary r-tPA lysis. Congenit. Heart Dis. 9, E169–E174 (2014).

    Article  PubMed  Google Scholar 

  56. Yang, P. et al. Electrocardiographic characterization of rhesus monkey model of ischemic myocardial infarction induced by left anterior descending artery ligation. Cardiovasc. Toxicol. 11, 365–372 (2011).

    Article  PubMed  Google Scholar 

  57. Wang, T., Xiao, Y., Zhang, J., Jing, F. & Zeng, G. Dynamic regulation of HIF-1 signaling in the rhesus monkey heart after ischemic injury. BMC Cardiovasc. Disord. 22, 407 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ye, L. et al. Early regenerative capacity in the porcine heart. Circulation 138, 2798–2808 (2018).

    Article  PubMed  Google Scholar 

  59. Zhu, W. et al. Regenerative potential of neonatal porcine hearts. Circulation 138, 2809–2816 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Malliaras, K., Polychronopoulou, E., Poulakida, I., Sagris, D. & Makaritsis, K. Lack of macroscopically evident cardiac regeneration or spontaneous functional recovery in infarcted neonatal pigs. Hellenic J. Cardiol. 61, 219–221 (2020).

    Article  PubMed  Google Scholar 

  61. Agnew, E. J. et al. Scar formation with decreased cardiac function following ischemia/reperfusion injury in 1 month old swine. J. Cardiovasc. Dev. Dis. 7, 1 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Herdrich, B. J. et al. Regenerative healing following foetal myocardial infarction. Eur. J. Cardiothorac. Surg. 38, 691–698 (2010).

    Article  PubMed  Google Scholar 

  63. Ito, K. et al. Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Dev. Dyn. 243, 1106–1115 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Lai, S. L. et al. Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. Elife 6, e25605 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Marshall, L. N. et al. Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability. Proc. Natl Acad. Sci. USA 116, 3614–3623 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Marshall, L. et al. Persistent fibrosis, hypertrophy and sarcomere disorganisation after endoscopy-guided heart resection in adult Xenopus. PLoS ONE 12, e0173418 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Peng, H. et al. Adult spiny mice (Acomys) exhibit endogenous cardiac recovery in response to myocardial infarction. NPJ Regen. Med. 6, 74 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Qi, Y. et al. Functional heart recovery in an adult mammal, the spiny mouse. Int. J. Cardiol. 338, 196–203 (2021).

    Article  PubMed  Google Scholar 

  69. Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sallin, P., de Preux Charles, A. S., Duruz, V., Pfefferli, C. & Jazwinska, A. A dual epimorphic and compensatory mode of heart regeneration in zebrafish. Dev. Biol. 399, 27–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Hirose, K. et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364, 184–188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gonzalez-Rosa, J. M. et al. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev. Cell 44, 433–446.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bader, D. & Oberpriller, J. Autoradiographic and electron microscopic studies of minced cardiac muscle regeneration in the adult newt, Notophthalmus viridescens. J. Exp. Zool. 208, 177–193 (1979).

    Article  CAS  PubMed  Google Scholar 

  75. Bettencourt-Dias, M., Mittnacht, S. & Brockes, J. P. Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J. Cell Sci. 116, 4001–4009 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Marshall, L., Girardot, F., Demeneix, B. A. & Coen, L. Is adult cardiac regeneration absent in Xenopus laevis yet present in Xenopus tropicalis? Cell Biosci. 8, 31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Walsh, S., Ponten, A., Fleischmann, B. K. & Jovinge, S. Cardiomyocyte cell cycle control and growth estimation in vivo – an analysis based on cardiomyocyte nuclei. Cardiovasc. Res. 86, 365–373 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Kretzschmar, K. et al. Profiling proliferative cells and their progeny in damaged murine hearts. Proc. Natl Acad. Sci. USA 115, E12245–E12254 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Patterson, M. et al. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat. Genet. 49, 1346–1353 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mollova, M. et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl Acad. Sci. USA 110, 1446–1451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Leach, J. P. et al. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550, 260–264 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Foglia, M. J. & Poss, K. D. Building and re-building the heart by cardiomyocyte proliferation. Development 143, 729–740 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, J., An, M., Haubner, B. J. & Penninger, J. M. Cardiac regeneration: options for repairing the injured heart. Front. Cardiovasc. Med. 9, 981982 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Lopaschuk, G. D. & Jaswal, J. S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 56, 130–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Semenza, G. L. Life with oxygen. Science 318, 62–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Puente, B. N. et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157, 565–579 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cardoso, A. C. et al. Mitochondrial substrate utilization regulates cardiomyocyte cell cycle progression. Nat. Metab. 2, 167–178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cui, M. et al. Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev. Cell 53, 102–116.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nakada, Y. et al. Hypoxia induces heart regeneration in adult mice. Nature 541, 222–227 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Staudt, D. & Stainier, D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu. Rev. Genet. 46, 397–418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jopling, C., Sune, G., Faucherre, A., Fabregat, C. & Izpisua Belmonte, J. C. Hypoxia induces myocardial regeneration in zebrafish. Circulation 126, 3017–3027 (2012).

    Article  PubMed  Google Scholar 

  95. Wong, Y. L. et al. Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348, 1155–1160 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zebrowski, D. C. et al. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. Elife 4, eo5563 (2015).

    Article  Google Scholar 

  97. Moser, S. C. et al. PHD1 links cell-cycle progression to oxygen sensing through hydroxylation of the centrosomal protein Cep192. Dev. Cell 26, 381–392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pettinato, A. M., Ladha, F. A. & Hinson, J. T. The cardiac sarcomere and cell cycle. Curr. Cardiol. Rep. 24, 623–630 (2022).

    Article  PubMed  Google Scholar 

  99. Ahuja, P., Perriard, E., Perriard, J. C. & Ehler, E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J. Cell Sci. 117, 3295–3306 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Li, F., Wang, X. & Gerdes, A. M. Formation of binucleated cardiac myocytes in rat heart: II. Cytoskeletal organisation. J. Mol. Cell Cardiol. 29, 1553–1565 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Guo, Y. & Pu, W. T. Cardiomyocyte maturation: new phase in development. Circ. Res. 126, 1086–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ali, S. R. et al. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc. Natl Acad. Sci. USA 111, 8850–8855 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mohamed, T. M. A. et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173, 104–116.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Abouleisa, R. R. E. et al. Transient cell cycle induction in cardiomyocytes to treat subacute ischemic heart failure. Circulation 145, 1339–1355 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, Y. et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science 373, 1537–1540 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Aharonov, A. et al. ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat. Cell Biol. 22, 1346–1356 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Ouyang, Z. & Wei, K. miRNA in cardiac development and regeneration. Cell Regen. 10, 14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Eaton, R. C. & Farley, R. D. Growth and the reduction of depensation of zebrafish, Brachydanio rerio, reared in the laboratory. Copeia 1974, 204–209 (1974).

    Article  Google Scholar 

  109. He, L., Nguyen, N. B., Ardehali, R. & Zhou, B. Heart regeneration by endogenous stem cells and cardiomyocyte proliferation: controversy, fallacy, and progress. Circulation 142, 275–291 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhang, R. et al. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 498, 497–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Foglia, M. J., Cao, J., Tornini, V. A. & Poss, K. D. Multicolor mapping of the cardiomyocyte proliferation dynamics that construct the atrium. Development 143, 1688–1696 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cao, J. & Poss, K. D. The epicardium as a hub for heart regeneration. Nat. Rev. Cardiol. 15, 631–647 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Simoes, F. C. & Riley, P. R. The ontogeny, activation and function of the epicardium during heart development and regeneration. Development 145, dev155994 (2018).

    Article  PubMed  Google Scholar 

  114. Cai, W. et al. Limited regeneration potential with minimal epicardial progenitor conversions in the neonatal mouse heart after injury. Cell Rep. 28, 190–201.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Smart, N. et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature 474, 640–644 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kikuchi, K. et al. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895–2902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gonzalez-Rosa, J. M., Peralta, M. & Mercader, N. Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev. Biol. 370, 173–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Xia, Y. et al. Activation of a transient progenitor state in the epicardium is required for zebrafish heart regeneration. Nat. Commun. 13, 7704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Huang, G. N. et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338, 1599–1603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cao, Y. et al. Identification of enhancer regulatory elements that direct epicardial gene expression during zebrafish heart regeneration. Development 149, dev200133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Goldman, J. A. et al. Resolving heart regeneration by replacement histone profiling. Dev. Cell 40, 392–404 e395 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pfefferli, C. & Jazwinska, A. The careg element reveals a common regulation of regeneration in the zebrafish myocardium and fin. Nat. Commun. 8, 15151 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kang, J. et al. Modulation of tissue repair by regeneration enhancer elements. Nature 532, 201–206 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Begeman, I. J. et al. Decoding an organ regeneration switch by dissecting cardiac regeneration enhancers. Development 147, dev194019 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tallquist, M. D. & Molkentin, J. D. Redefining the identity of cardiac fibroblasts. Nat. Rev. Cardiol. 14, 484–491 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sanchez-Iranzo, H. et al. Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart. Proc. Natl Acad. Sci. USA 115, 4188–4193 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hu, B. et al. Origin and function of activated fibroblast states during zebrafish heart regeneration. Nat. Genet. 54, 1227–1237 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Koth, J. et al. Runx1 promotes scar deposition and inhibits myocardial proliferation and survival during zebrafish heart regeneration. Development 147, dev186569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Simoes, F. C. et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. 11, 600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mercer, S. E., Odelberg, S. J. & Simon, H. G. A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Dev. Biol. 382, 457–469 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, Z. et al. Cell-type-specific gene regulatory networks underlying murine neonatal heart regeneration at single-cell resolution. Cell Rep. 33, 108472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hesse, J. et al. Single-cell transcriptomics defines heterogeneity of epicardial cells and fibroblasts within the infarcted murine heart. Elife 10, e65921 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Forte, E. et al. Dynamic interstitial cell response during myocardial infarction predicts resilience to rupture in genetically diverse mice. Cell Rep. 30, 3149–3163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fu, X. et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Invest. 128, 2127–2143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang, Y. et al. Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation. Nat. Commun. 11, 2585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bassat, E. et al. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547, 179–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yokota, T. et al. Type V collagen in scar tissue regulates the size of scar after heart injury. Cell 182, 545–562 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yahalom-Ronen, Y., Rajchman, D., Sarig, R., Geiger, B. & Tzahor, E. Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. Elife 4, e07455 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Maden, M. & Varholick, J. A. Model systems for regeneration: the spiny mouse, Acomys cahirinus. Development 147, dev167718 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lupu, I. E., De Val, S. & Smart, N. Coronary vessel formation in development and disease: mechanisms and insights for therapy. Nat. Rev. Cardiol. 17, 790–806 (2020).

    Article  PubMed  Google Scholar 

  142. Reese, D. E., Mikawa, T. & Bader, D. M. Development of the coronary vessel system. Circ. Res. 91, 761–768 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Tota, B., Cimini, V., Salvatore, G. & Zummo, G. Comparative study of the arterial and lacunary systems of the ventricular myocardium of elasmobranch and teleost fishes. Am. J. Anat. 167, 15–32 (1983).

    Article  CAS  PubMed  Google Scholar 

  144. Harrison, M. R. et al. Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Dev. Cell 33, 442–454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Harrison, M. R. et al. Late developing cardiac lymphatic vasculature supports adult zebrafish heart function and regeneration. Elife 8, e42762 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gancz, D. et al. Distinct origins and molecular mechanisms contribute to lymphatic formation during cardiac growth and regeneration. Elife 8, e44153 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lemanski, L. F., Fitts, E. P. & Marx, B. S. Fine structure of the heart in the Japanese medaka, Oryzias latipes. J. Ultrastruct. Res. 53, 37–65 (1975).

    Article  CAS  PubMed  Google Scholar 

  148. Kapuria, S., Yoshida, T. & Lien, C. L. Coronary vasculature in cardiac development and regeneration. J. Cardiovasc. Dev. Dis. 5, 59 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Red-Horse, K., Ueno, H., Weissman, I. L. & Krasnow, M. A. Coronary arteries form by developmental reprogramming of venous cells. Nature 464, 549–553 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, H. et al. Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. Circ. Res. 118, 1880–1893 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Wu, B. et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151, 1083–1096 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tian, X. et al. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345, 90–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Klaourakis, K., Vieira, J. M. & Riley, P. R. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat. Rev. Cardiol. 18, 368–379 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Stone, O. A. & Stainier, D. Y. R. Paraxial mesoderm is the major source of lymphatic endothelium. Dev. Cell 50, 247–255 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Klotz, L. et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522, 62–67 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lioux, G. et al. A second heart field-derived vasculogenic niche contributes to cardiac lymphatics. Dev. Cell 52, 350–363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Maruyama, K., Miyagawa-Tomita, S., Mizukami, K., Matsuzaki, F. & Kurihara, H. Isl1-expressing non-venous cell lineage contributes to cardiac lymphatic vessel development. Dev. Biol. 452, 134–143 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Marin-Juez, R. et al. Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 113, 11237–11242 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhao, L. et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 111, 1403–1408 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Marin-Juez, R. et al. Coronary revascularization during heart regeneration is regulated by epicardial and endocardial cues and forms a scaffold for cardiomyocyte repopulation. Dev. Cell 51, 503–515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Vivien, C. J. et al. Vegfc/d-dependent regulation of the lymphatic vasculature during cardiac regeneration is influenced by injury context. NPJ Regen. Med. 4, 18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. He, L. et al. Preexisting endothelial cells mediate cardiac neovascularization after injury. J. Clin. Invest. 127, 2968–2981 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Dube, K. N. et al. Recapitulation of developmental mechanisms to revascularize the ischemic heart. JCI Insight 2, e96800 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Payne, S. et al. Regulatory pathways governing murine coronary vessel formation are dysregulated in the injured adult heart. Nat. Commun. 10, 3276 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Seiler, C., Stoller, M., Pitt, B. & Meier, P. The human coronary collateral circulation: development and clinical importance. Eur. Heart J. 34, 2674–2682 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Das, S. et al. A unique collateral artery development program promotes neonatal heart regeneration. Cell 176, 1128–1142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Henri, O. et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 133, 1484–1497 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Vieira, J. M. et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J. Clin. Invest. 128, 3402–3412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Simoes, F. C. & Riley, P. R. Immune cells in cardiac repair and regeneration. Development 149, dev199906 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. de Preux Charles, A. S., Bise, T., Baier, F., Marro, J. & Jazwinska, A. Distinct effects of inflammation on preconditioning and regeneration of the adult zebrafish heart. Open Biol. 6, 60102 (2016).

    Google Scholar 

  172. Bevan, L. et al. Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovasc. Res. 116, 1357–1371 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Hui, S. P. et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell 43, 659–672.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Xu, S. et al. Prolonged neutrophil retention in the wound impairs zebrafish heart regeneration after cryoinjury. Fish. Shellfish. Immunol. 94, 447–454 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Sanz-Morejon, A. et al. Wilms tumor 1b expression defines a pro-regenerative macrophage subtype and is required for organ regeneration in the zebrafish. Cell Rep. 28, 1296–1306 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bruton, F. A. et al. Macrophages trigger cardiomyocyte proliferation by increasing epicardial vegfaa expression during larval zebrafish heart regeneration. Dev. Cell 57, 1512–1528 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Horckmans, M. et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 38, 187–197 (2017).

    CAS  PubMed  Google Scholar 

  178. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hilgendorf, I. et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 114, 1611–1622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bajpai, G. et al. Tissue resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263–278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Jung, S. H. et al. Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2hi macrophages in infarcted hearts. Nat. Commun. 13, 4580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rizzo, G. et al. Dynamics of monocyte-derived macrophage diversity in experimental myocardial infarction. Cardiovasc. Res. 119, 772–785 (2022).

    Article  PubMed Central  Google Scholar 

  184. Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382–1392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dolejsi, T. et al. Adult T-cells impair neonatal cardiac regeneration. Eur. Heart J. 43, 2698–2709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Friedrichsen, S. et al. Regulation of iodothyronine deiodinases in the Pax8−/− mouse model of congenital hypothyroidism. Endocrinology 144, 777–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  189. Naqvi, N. et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 157, 795–807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chattergoon, N. N. et al. Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J. 26, 397–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wegner, N. C., Snodgrass, O. E., Dewar, H. & Hyde, J. R. Animal physiology. Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus. Science 348, 786–789 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Johnson, S. L. & Weston, J. A. Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration. Genetics 141, 1583–1595 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Katogi, R. et al. Large-scale analysis of the genes involved in fin regeneration and blastema formation in the medaka, Oryzias latipes. Mech. Dev. 121, 861–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. Tanaka, E. M. The molecular and cellular choreography of appendage regeneration. Cell 165, 1598–1608 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Kragl, M. et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Mokalled, M. H. et al. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 354, 630–634 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zukor, K. A., Kent, D. T. & Odelberg, S. J. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts. Neural Dev. 6, 1 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Rost, F. et al. Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls. Elife 5, e20357 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Seifert, A. W., Monaghan, J. R., Voss, S. R. & Maden, M. Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PLoS ONE 7, e32875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Howell, K. et al. Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Sci. Rep. 7, 45238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Li, Y. et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587, 613–618 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Cox, B. C. et al. Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 141, 816–829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Brigande, J. V. & Heller, S. Quo vadis, hair cell regeneration? Nat. Neurosci. 12, 679–685 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Seifert, A. W. et al. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489, 561–565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Salimova, E. et al. Variable outcomes of human heart attack recapitulated in genetically diverse mice. NPJ Regen. Med. 4, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Near, T. J. et al. Resolution of ray-finned fish phylogeny and timing of diversification. Proc. Natl Acad. Sci. USA 109, 13698–13703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Roelants, K. et al. Global patterns of diversification in the history of modern amphibians. Proc. Natl Acad. Sci. USA 104, 887–892 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Alvarez-Carretero, S. et al. A species-level timeline of mammal evolution integrating phylogenomic data. Nature 602, 263–267 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Paul R. Riley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Marie José Goumans, James Martin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinberger, M., Riley, P.R. Animal models to study cardiac regeneration. Nat Rev Cardiol 21, 89–105 (2024). https://doi.org/10.1038/s41569-023-00914-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00914-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing