Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A single-atom quantum memory

Abstract

The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing1. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations2,3,4,5,6,7. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter8,9,10,11,12,13. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection14,15,16; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180 microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates17 and quantum repeaters18.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Single-atom quantum memory.
Figure 2: Write and read processes of the memory.
Figure 3: Tomography of the storage process for a storage time of 2 µs.
Figure 4: Storage time.

References

  1. 1

    Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nature Photon. 3, 706–714 (2009)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Matsukevich, D. N. et al. Entanglement of remote atomic qubits. Phys. Rev. Lett. 96, 030405 (2006)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Tanji, H., Ghosh, S., Simon, J., Bloom, B. & Vuletic´, V. Heralded single-magnon quantum memory for photon polarization states. Phys. Rev. Lett. 103, 043601 (2009)

    ADS  Article  Google Scholar 

  5. 5

    Jin, X.-M. et al. Quantum interface between frequency-uncorrelated down-converted entanglement and atomic-ensemble quantum memory. Preprint at 〈http://arxiv.org/abs/1004.4691〉 (2010)

  6. 6

    Saglamyurek, E. et al. Broadband waveguide quantum memory for entangled photons. Nature 469, 512–515 (2011)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Blinov, B. B., Moehring, D. L., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Volz, J. et al. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)

    ADS  Article  Google Scholar 

  11. 11

    Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Lloyd, S., Shahriar, M. S., Shapiro, J. H. & Hemmer, P. R. Long distance, unconditional teleportation of atomic states via complete Bell state measurements. Phys. Rev. Lett. 87, 167903 (2001)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Bochmann, J. et al. Lossless state detection of single neutral atoms. Phys. Rev. Lett. 104, 203601 (2010)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Piro, N. et al. Heralded single-photon absorption by a single atom. Nature Phys. 7, 17–20 (2011)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Mücke, M. et al. Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010)

    ADS  Article  Google Scholar 

  20. 20

    Kampschulte, T. et al. Optical control of the refractive index of a single atom. Phys. Rev. Lett. 105, 153603 (2010)

    ADS  Article  Google Scholar 

  21. 21

    Hennrich, M., Legero, T., Kuhn, A. & Rempe, G. Vacuum-stimulated Raman scattering based on adiabatic passage in a high-finesse optical cavity. Phys. Rev. Lett. 85, 4872–4875 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Vasilev, G. S., Ljunggren, D. & Kuhn, A. Single photons made-to-measure. N. J. Phys. 12, 063024 (2010)

    Article  Google Scholar 

  24. 24

    Gorshkov, A. V., André, A., Lukin, M. D. & Sørensen, A. S. Photon storage in Λ-type optically dense atomic media. I. Cavity model. Phys. Rev. A 76, 033804 (2007)

    ADS  Article  Google Scholar 

  25. 25

    James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    ADS  Article  Google Scholar 

  26. 26

    Bowdrey, M. D., Oi, D. K. L., Short, A., Banaszek, K. & Jones, J. Fidelity of single qubit maps. Phys. Lett. A 294, 258–260 (2002)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  27. 27

    Curty, M. & Lütkenhaus, N. Intercept-resend attacks in the Bennett-Brassard 1984 quantum-key-distribution protocol with weak coherent pulses. Phys. Rev. A 71, 062301 (2005)

    ADS  Article  Google Scholar 

  28. 28

    Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  29. 29

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  30. 30

    Zhao, B. et al. A millisecond quantum memory for scalable quantum networks. Nature Phys. 5, 95–99 (2009)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Zhao, R. et al. Long-lived quantum memory. Nature Phys. 5, 100–104 (2009)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Radnaev, A. G. et al. A quantum memory with telecom-wavelength conversion. Nature Phys. 6, 894–899 (2010)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank N. Kiesel for discussions and A. Neuzner for experimental assistance. This work was supported by the Deutsche Forschungsgemeinschaft (Research Unit 635), by the European Union (Collaborative Project AQUTE) and by the Bundesministerium für Bildung und Forschung via IKT 2020 (QK_QuOReP). E.F. acknowledges support from the Alexander von Humboldt Foundation.

Author information

Affiliations

Authors

Contributions

All authors contributed to the experiment, the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to Stephan Ritter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text, Supplementary Figure 1 with a legend, Supplementary Movie 1 and additional references. (PDF 4045 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Specht, H., Nölleke, C., Reiserer, A. et al. A single-atom quantum memory. Nature 473, 190–193 (2011). https://doi.org/10.1038/nature09997

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing