Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Supermassive black holes do not correlate with dark matter haloes of galaxies

Abstract

Supermassive black holes have been detected in all galaxies that contain bulge components when the galaxies observed were close enough that the searches were feasible. Together with the observation that bigger black holes live in bigger bulges1,2,3,4, this has led to the belief that black-hole growth and bulge formation regulate each other5. That is, black holes and bulges coevolve. Therefore, reports6,7 of a similar correlation between black holes and the dark matter haloes in which visible galaxies are embedded have profound implications. Dark matter is likely to be non-baryonic, so these reports suggest that unknown, exotic physics controls black-hole growth. Here we show, in part on the basis of recent measurements8 of bulgeless galaxies, that there is almost no correlation between dark matter and parameters that measure black holes unless the galaxy also contains a bulge. We conclude that black holes do not correlate directly with dark matter. They do not correlate with galaxy disks, either9,10. Therefore, black holes coevolve only with bulges. This simplifies the puzzle of their coevolution by focusing attention on purely baryonic processes in the galaxy mergers that make bulges11.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outer rotation velocities versus near-central velocity dispersions of disk galaxies.
Figure 2: Correlations of dynamically measured black-hole masses with structural parameters of host galaxies.

Similar content being viewed by others

References

  1. Kormendy, J. in The Nearest Active Galaxies (eds Beckman, J., Colina, L. & Netzer, H. ) 197–218 (Madrid: Consejo Superior de Investigaciones Científicas, 1993)

    Google Scholar 

  2. Kormendy, J. & Richstone, D. Inward bound – the search for supermassive black holes in galactic nuclei. Annu. Rev. Astron. Astrophys. 33, 581–624 (1995)

    Article  ADS  Google Scholar 

  3. Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. 539, L9–L12 (2000)

    Article  ADS  Google Scholar 

  4. Gebhardt, K. et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. 539, L13–L16 (2000)

    Article  ADS  Google Scholar 

  5. Ho, L. C. (ed.) Coevolution of Black Holes and Galaxies (Carnegie Observatories Astrophys. Ser. 1, Cambridge Univ. Press, 2004)

    Google Scholar 

  6. Ferrarese, L. Beyond the bulge: a fundamental relation between supermassive black holes and dark matter halos. Astrophys. J. 578, 90–97 (2002)

    Article  ADS  Google Scholar 

  7. Baes, M., Buyle, P., Hau, G. K. T. & Dejonghe, H. Observational evidence for a connection between supermassive black holes and dark matter haloes. Mon. Not. R. Astron. Soc. 341, L44–L48 (2003)

    Article  ADS  Google Scholar 

  8. Kormendy, J., Drory, N., Bender, R. & Cornell, M. E. Bulgeless giant galaxies challenge our picture of galaxy formation by hierarchical clustering. Astrophys. J. 723, 54–80 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Kormendy, J. & Gebhardt, K. in Proc. 20th Texas Symp. Relativ. Astrophys. (eds Wheeler, J. C. & Martel, H. ) 363–381 (American Institute of Physics, 2001)

    Google Scholar 

  10. Kormendy, J., Bender, R. & Cornell, M. E. Supermassive black holes do not correlate with galaxy disks or pseudobulges. Nature 10.1038/nature09694 (this issue).

  11. Toomre, A. in Evolution of Galaxies and Stellar Populations (eds Tinsley, B. M. & Larson, R. B. ) 401–426 (Yale Univ. Observatory, 1977)

    Google Scholar 

  12. Silk, J. & Rees, M. J. Quasars and galaxy formation. Astron. Astrophys. 331, L1–L4 (1998)

    ADS  Google Scholar 

  13. van Albada, T. S. & Sancisi, R. Dark matter in spiral galaxies. Phil. Trans. R. Soc. Lond. A 320, 447–464 (1986)

    Article  ADS  CAS  Google Scholar 

  14. Sancisi, R. & van Albada, T. S. in Dark Matter in the Universe (eds Kormendy, J. & Knapp, G. R. ) 67–80 (Proc. IAU Symp. 117, Reidel, 1987)

    Book  Google Scholar 

  15. Böker, T. et al. A Hubble Space Telescope census of nuclear star clusters in late-type spiral galaxies. II. Cluster sizes and structural parameter correlations. Astron. J. 127, 105–118 (2004)

    Article  ADS  Google Scholar 

  16. Kormendy, J. & Kennicutt, R. C. Secular evolution and the formation of pseudobulges in disk galaxies. Annu. Rev. Astron. Astrophys. 42, 603–683 (2004)

    Article  ADS  Google Scholar 

  17. Ho, L. C. Bulge and halo kinematics across the Hubble sequence. Astrophys. J. 668, 94–109 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Komatsu, E. et al. Five-year Wilkinson Microwave Anisotropy Probe observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180, 330–376 (2009)

    Article  ADS  Google Scholar 

  19. Gunn, J. E. in Dark Matter in the Universe (eds Kormendy, J. & Knapp, G. R. ) 537–546 (Proc. IAU Symp. 117, Reidel, 1987)

    Book  Google Scholar 

  20. Ryden, B. S. & Gunn, J. E. Galaxy formation by gravitational collapse. Astrophys. J. 318, 15–31 (1987)

    Article  ADS  Google Scholar 

  21. White, S. D. M. & Rees, M. J. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)

    Article  ADS  Google Scholar 

  22. Springel, V. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Sanders, D. B. et al. Ultraluminous infrared galaxies and the origin of quasars. Astrophys. J. 325, 74–91 (1988)

    Article  ADS  CAS  Google Scholar 

  24. Hopkins, P. F. et al. A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids. Astrophys. J. Suppl. Ser. 163, 1–49 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Terlevich, E., Díaz, A. I. & Terlevich, R. On the behaviour of the IR Ca II triplet in normal and active galaxies. Mon. Not. R. Astron. Soc. 242, 271–284 (1990)

    Article  ADS  CAS  Google Scholar 

  26. Kormendy, J. & McClure, R. D. The nucleus of M 33. Astron. J. 105, 1793–1812 (1993)

    Article  ADS  CAS  Google Scholar 

  27. Gebhardt, K. et al. M 33: a galaxy with no supermassive black hole. Astron. J. 122, 2469–2476 (2001)

    Article  ADS  Google Scholar 

  28. Böker, T., van der Marel, R. P. & Vacca, W. D. CO band head spectroscopy of IC 342: mass and age of the nuclear star cluster. Astron. J. 118, 831–842 (1999)

    Article  ADS  Google Scholar 

  29. Tremaine, S. et al. The slope of the black hole mass versus velocity dispersion correlation. Astrophys. J. 574, 740–753 (2002)

    Article  ADS  Google Scholar 

  30. Walcher, C. J. et al. Masses of star clusters in the nuclei of bulgeless spiral galaxies. Astrophys. J. 618, 237–246 (2005)

    Article  ADS  CAS  Google Scholar 

  31. Ho, L. C. & Filippenko, A. V. High-dispersion spectroscopy of a luminous, young star cluster in NGC 1705: further evidence for present-day formation of globular clusters. Astrophys. J. 472, 600–610 (1996)

    Article  ADS  CAS  Google Scholar 

  32. Gültekin, K. et al. The M–σ and ML relations in galactic bulges, and determinations of their intrinsic scatter. Astrophys. J. 698, 198–221 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Courteau for making available his surface photometry of NGC 801 (Supplementary Information) and J. Greene for helpful comments on the manuscript. The Hobby–Eberly Telescope (HET) is a joint project of the University of Texas at Austin, Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität Munich and Georg-August-Universität Göttingen. It is named in honour of its principal benefactors, W. P. Hobby and R. E. Eberly. This work was supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the analysis in this paper. J.K. wrote most of the text.

Corresponding author

Correspondence to John Kormendy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text and Data, Supplementary Figures 1-7 with legends, Supplementary Table 1 and additional references. (PDF 1171 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kormendy, J., Bender, R. Supermassive black holes do not correlate with dark matter haloes of galaxies. Nature 469, 377–380 (2011). https://doi.org/10.1038/nature09695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09695

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing