Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The moment of truth for WIMP dark matter

Abstract

We know that dark matter constitutes 85 per cent of all the matter in the Universe, but we do not know of what it is made. Amongst the many dark matter candidates proposed, WIMPs (weakly interacting massive particles) occupy a special place, because they arise naturally from new theories that seek to extend the standard model of particle physics. With the advent of the Large Hadron Collider at CERN, and a new generation of astroparticle experiments, the moment of truth has come for WIMPs: either we will discover them in the next five to ten years, or we will witness their inevitable decline.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Status of direct dark matter searches.
Figure 2: Complementarity between accelerator and direct detection searches.

References

  1. 1

    Bertone, G. (ed.) Particle Dark Matter: Observations, Models and Searches (Cambridge Univ. Press, 2010)Contains an updated discussion of the various aspects of the dark matter problem in astrophysics, cosmology and particle physics.

    Google Scholar 

  2. 2

    Einasto, J. Dark matter. In UNESCO EOLSS Encyclopedia; preprint at 〈http://arXiv.org/abs/0901.0632〉 (2009)

    Google Scholar 

  3. 3

    Zwicky, F. Spectral displacement of extra galactic nebulae. Helv. Phys. Acta 6, 110–127 (1933)

    ADS  MATH  Google Scholar 

  4. 4

    Babcock, H. W. The rotation of the Andromeda Nebula. Lick Obs. Bull. 19, 41–51 (1939)

    ADS  Article  Google Scholar 

  5. 5

    Kahn, F. D. & Woltjer, L. Intergalactic matter and the galaxy. Astrophys. J. 130, 705–717 (1959)

    ADS  Article  Google Scholar 

  6. 6

    Einasto, J. & Lynden-Bell, D. On the mass of the Local Group and the motion of its barycentre. Mon. Not. R. Astron. Soc. 199, 67–80 (1982)

    ADS  Article  Google Scholar 

  7. 7

    Bosma, A. The Distribution and Kinematics of Neutral Hydrogen in Spiral Galaxies of Various Morphological Types. PhD thesis, Groningen Univ. (1978)

    Google Scholar 

  8. 8

    Rubin, V. C., Ford, W. K. J. & Thonnard, N. Rotational properties of 21 SC galaxies with a large range of luminosities and radii. Astrophys. J. 238, 471–487 (1980)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Milgrom, M. & Bekenstein, J. in Dark Matter in the Universe (eds Kormendy, J. & Knapp, G. R.) 319–330 (IAU Symp. No. 117, 1987)

    Google Scholar 

  10. 10

    Clowe, D. et al. A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Angus, G. W., Shan, H., Zhao, H. & Famaey, B. On the law of gravity, the mass of neutrinos and the proof of dark matter. Astrophys. J. 654, L13–L16 (2007)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Komatsu, E. et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Preprint at 〈http://arXiv.org/abs/1001.4538〉 (2010)Contains a state of the art determination of cosmological parameters, and shows that dark matter is a necessary ingredient of the standard cosmological model.

  13. 13

    Diemand, J. & Moore, B. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 14–37 (Cambridge Univ. Press, 2010)

    Google Scholar 

  14. 14

    Mellier, Y. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 56–82 (Cambridge Univ. Press, 2010)

    Google Scholar 

  15. 15

    Catena, R. & Ullio, P. A novel determination of the local dark matter density. J. Cosmol. Astropart. Phys. 08, 004 (2010)

    ADS  Article  Google Scholar 

  16. 16

    Pato, M., Agertz, O., Bertone, G., Moore, B. & Teyssier, R. Systematic uncertainties in the determination of the local dark matter density. Phys. Rev. D 82, 023531 (2010)

    ADS  Article  Google Scholar 

  17. 17

    Taoso, M., Bertone, G. & Masiero A Dark matter candidates: a ten-point test. J. Cosmol. Astropart. Phys. 03, 022 (2008)

    ADS  Article  Google Scholar 

  18. 18

    Sikivie, P. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 204–227 (Cambridge Univ. Press, 2010)

    Google Scholar 

  19. 19

    Visinelli, L. & Gondolo, P. Dark matter axions revisited. Phys. Rev. D 80, 035024 (2009)

    ADS  Article  Google Scholar 

  20. 20

    Shaposhnikov, M. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 228–248 (Cambridge Univ. Press, 2010)

    Google Scholar 

  21. 21

    Boyarsky, A., Ruchayskiy, O. & Shaposhnikov, M. The role of sterile neutrinos in cosmology and astrophysics. Annu. Rev. Nucl. Part. Sci. 59, 191–214 (2009)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Bergström, L. Non-baryonic dark matter: observational evidence and detection methods. Rep. Prog. Phys. 63, 793–841 (2000)

    ADS  Article  Google Scholar 

  23. 23

    Bertone, G., Hooper, D. & Silk, J. Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Goldberg, H. Constraint on the photino mass from cosmology. Phys. Rev. Lett. 50, 1419–1422 (1983); erratum. Phys. Rev. Lett. 103, 099905 (2009)

    ADS  Article  Google Scholar 

  25. 25

    Ellis, J. R., Hagelin, J. S., Nanopoulos, D. V., Olive, K. A. & Srednicki, M. Supersymmetric relics from the big bang. Nucl. Phys. B 238, 453–476 (1984)

    ADS  Article  Google Scholar 

  26. 26

    Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Jungman, G., Kamionkowski, M. & Griest, K. Supersymmetric dark matter. Phys. Rep. 267, 195–373 (1996)

    ADS  Article  Google Scholar 

  28. 28

    Goodman, M. W. & Witten, E. Detectability of certain dark-matter candidates. Phys. Rev. D 31, 3059–3063 (1985)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Silk, J. & Srednicki, M. Cosmic-ray antiprotons as a probe of a photino-dominated universe. Phys. Rev. Lett. 53, 624–627 (1984)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Silk, J., Olive, K. A. & Srednicki, M. The photino, the sun, and high-energy neutrinos. Phys. Rev. Lett. 55, 257–259 (1985)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Adriani, O. et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458, 607–609 (2009)Discusses the discovery of an anomalous abundance of positrons with the PAMELA anti-matter satellite, tentatively interpreted in terms of the annihilation of dark matter particles.

    CAS  ADS  Article  Google Scholar 

  32. 32

    Galli, S., Iocco, F., Bertone, G. & Melchiorri, A. CMB constraints on Dark Matter models with large annihilation cross-section. Phys. Rev. D 80, 023505 (2009)

    ADS  Article  Google Scholar 

  33. 33

    Slatyer, T. R., Padmanabhan, N. & Finkbeiner, D. P. CMB constraints on WIMP annihilation: energy absorption during the recombination epoch. Phys. Rev. D 80, 043526 (2009)

    ADS  Article  Google Scholar 

  34. 34

    Cirelli, M., Kadastik, M., Raidal, M. & Strumia, A. Model-independent implications of the e± cosmic ray spectra on properties of Dark Matter. Nucl. Phys. B 813, 1–21 (2009)

    ADS  Article  Google Scholar 

  35. 35

    Bertone, G., Cirelli, M., Strumia, A. & Taoso, M. Gamma-ray and radio tests of the e± excess from DM annihilations. J. Cosmol. Astropart. Phys. 03, 009 (2009)

    ADS  Article  Google Scholar 

  36. 36

    Abdo, A. A. et al. Fermi LAT search for photon lines from 30 to 200 GeV and dark matter implications. Phys. Rev. Lett. 104, 091302 (2010)

    CAS  ADS  Article  Google Scholar 

  37. 37

    Halzen, F. & Hooper, D. The indirect search for dark matter with IceCube. New J. Phys. 11, 105019 (2009)

    ADS  Article  Google Scholar 

  38. 38

    Profumo, S. & Ullio, P. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 547–564 (Cambridge Univ. Press, 2010)

    Google Scholar 

  39. 39

    Ando, S. & Komatsu, E. Anisotropy of the cosmic gamma-ray background from dark matter. Phys. Rev. D 73, 023521 (2006)

    ADS  Article  Google Scholar 

  40. 40

    Gaitskell, R. Direct detection of dark matter. Annu. Rev. Nucl. Part. Sci. 54, 315–359 (2004)

    CAS  ADS  Article  Google Scholar 

  41. 41

    Bernabei, R. et al. First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56, 333–355 (2008)

    CAS  ADS  Article  Google Scholar 

  42. 42

    Fornengo, N. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 383–391 (Cambridge Univ. Press, 2010)

    Google Scholar 

  43. 43

    Aalseth, C. E. et al. Results from a search for light-mass dark matter with a P-type point. Preprint at 〈http://arXiv.org/abs/1002.4703〉 (2010)

  44. 44

    Aprile, E. et al. First dark matter results from the XENON100 experiment. Preprint at 〈http://arXiv.org/abs/1005.0380〉 (2010)

  45. 45

    Savage, C., Gelmini, G., Gondolo, P. & Freese, K. XENON10/100 dark matter constraints in comparison with CoGeNT and DAMA: examining the Leff dependence. Preprint at 〈http://arXiv.org/abs/1006.0972〉 (2010)

  46. 46

    Ahmed, Z. et al. Results from the final exposure of the CDMS II experiment. Preprint at 〈http://arXiv.org/abs/0912.3592〉 (2009)

  47. 47

    Green, A. M. Determining the WIMP mass from a single direct detection experiment, a more detailed study. J. Cosmol. Astropart. Phys. 07, 005 (2008)

    ADS  Article  Google Scholar 

  48. 48

    Drees, M. & Shan, C. L. Model-independent determination of the WIMP mass from direct dark matter. J. Cosmol. Astropart. Phys. 06, 012 (2008)

    ADS  Article  Google Scholar 

  49. 49

    Bertone, G., Cerdeño, D. G., Collar, J. I. & Odom, B. C. WIMP identification through a combined measurement of axial and scalar couplings. Phys. Rev. Lett. 99, 151301 (2007)

    CAS  ADS  Article  Google Scholar 

  50. 50

    Battaglia, M. et al. Updated post-WMAP benchmarks for supersymmetry. Eur. Phys. J. C 33, 273–296 (2004)

    CAS  ADS  Article  Google Scholar 

  51. 51

    Trotta, R., Feroz, F., Hobson, M. P., Roszkowski, L. & Ruiz de Austri, R. The impact of priors and observables on parameter inferences in the constrained MSSM. J. High Energy Phys. 12, 024 (2008)

    ADS  Article  Google Scholar 

  52. 52

    Baltz, E. A. & Gondolo, P. Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter. J. High Energy Phys. 0410, 052 (2004)

    ADS  Article  Google Scholar 

  53. 53

    Strigari, L. E. Neutrino coherent scattering rates at direct dark matter detectors. New J. Phys. 11, 105011 (2009)

    ADS  Article  Google Scholar 

  54. 54

    Ellis, J. & Olive, K. A. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 142–162 (Cambridge Univ. Press, 2010)

    Google Scholar 

  55. 55

    Nath, P. et al. The hunt for new physics at the Large Hadron Collider. Nucl. Phys. Proc., Suppl. 200–202, 185 (2010)

  56. 56

    Baltz, E. A., Battaglia, M., Peskin, M. E. & Wizansky, T. Determination of dark matter properties at high-energy colliders. Phys. Rev. D 74, 103521 (2006)

    ADS  Article  Google Scholar 

  57. 57

    Bertone, G., Cerdeno, D. G., Fornasa, M., de Austri, R. R. & Trotta, R. Identification of dark matter particles with LHC and direct detection data. Phys. Rev. D (in the press); preprint at 〈http://arXiv.org/abs/1005.4280〉 (2010)Shows how to combine in a consistent way data from direct and accelerator searches, and highlights the complementarity of these two search strategies.

  58. 58

    Gondolo P et al. DarkSUSY: Computing supersymmetric dark matter properties numerically. J. Cosmol. Astropart. Phys. 07, 008 (2004)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Bertone.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bertone, G. The moment of truth for WIMP dark matter. Nature 468, 389–393 (2010). https://doi.org/10.1038/nature09509

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing