The moment of truth for WIMP dark matter

Article metrics

Abstract

We know that dark matter constitutes 85 per cent of all the matter in the Universe, but we do not know of what it is made. Amongst the many dark matter candidates proposed, WIMPs (weakly interacting massive particles) occupy a special place, because they arise naturally from new theories that seek to extend the standard model of particle physics. With the advent of the Large Hadron Collider at CERN, and a new generation of astroparticle experiments, the moment of truth has come for WIMPs: either we will discover them in the next five to ten years, or we will witness their inevitable decline.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Status of direct dark matter searches.
Figure 2: Complementarity between accelerator and direct detection searches.

References

  1. 1

    Bertone, G. (ed.) Particle Dark Matter: Observations, Models and Searches (Cambridge Univ. Press, 2010)Contains an updated discussion of the various aspects of the dark matter problem in astrophysics, cosmology and particle physics.

  2. 2

    Einasto, J. Dark matter. In UNESCO EOLSS Encyclopedia; preprint at 〈http://arXiv.org/abs/0901.0632〉 (2009)

  3. 3

    Zwicky, F. Spectral displacement of extra galactic nebulae. Helv. Phys. Acta 6, 110–127 (1933)

  4. 4

    Babcock, H. W. The rotation of the Andromeda Nebula. Lick Obs. Bull. 19, 41–51 (1939)

  5. 5

    Kahn, F. D. & Woltjer, L. Intergalactic matter and the galaxy. Astrophys. J. 130, 705–717 (1959)

  6. 6

    Einasto, J. & Lynden-Bell, D. On the mass of the Local Group and the motion of its barycentre. Mon. Not. R. Astron. Soc. 199, 67–80 (1982)

  7. 7

    Bosma, A. The Distribution and Kinematics of Neutral Hydrogen in Spiral Galaxies of Various Morphological Types. PhD thesis, Groningen Univ. (1978)

  8. 8

    Rubin, V. C., Ford, W. K. J. & Thonnard, N. Rotational properties of 21 SC galaxies with a large range of luminosities and radii. Astrophys. J. 238, 471–487 (1980)

  9. 9

    Milgrom, M. & Bekenstein, J. in Dark Matter in the Universe (eds Kormendy, J. & Knapp, G. R.) 319–330 (IAU Symp. No. 117, 1987)

  10. 10

    Clowe, D. et al. A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006)

  11. 11

    Angus, G. W., Shan, H., Zhao, H. & Famaey, B. On the law of gravity, the mass of neutrinos and the proof of dark matter. Astrophys. J. 654, L13–L16 (2007)

  12. 12

    Komatsu, E. et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Preprint at 〈http://arXiv.org/abs/1001.4538〉 (2010)Contains a state of the art determination of cosmological parameters, and shows that dark matter is a necessary ingredient of the standard cosmological model.

  13. 13

    Diemand, J. & Moore, B. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 14–37 (Cambridge Univ. Press, 2010)

  14. 14

    Mellier, Y. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 56–82 (Cambridge Univ. Press, 2010)

  15. 15

    Catena, R. & Ullio, P. A novel determination of the local dark matter density. J. Cosmol. Astropart. Phys. 08, 004 (2010)

  16. 16

    Pato, M., Agertz, O., Bertone, G., Moore, B. & Teyssier, R. Systematic uncertainties in the determination of the local dark matter density. Phys. Rev. D 82, 023531 (2010)

  17. 17

    Taoso, M., Bertone, G. & Masiero A Dark matter candidates: a ten-point test. J. Cosmol. Astropart. Phys. 03, 022 (2008)

  18. 18

    Sikivie, P. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 204–227 (Cambridge Univ. Press, 2010)

  19. 19

    Visinelli, L. & Gondolo, P. Dark matter axions revisited. Phys. Rev. D 80, 035024 (2009)

  20. 20

    Shaposhnikov, M. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 228–248 (Cambridge Univ. Press, 2010)

  21. 21

    Boyarsky, A., Ruchayskiy, O. & Shaposhnikov, M. The role of sterile neutrinos in cosmology and astrophysics. Annu. Rev. Nucl. Part. Sci. 59, 191–214 (2009)

  22. 22

    Bergström, L. Non-baryonic dark matter: observational evidence and detection methods. Rep. Prog. Phys. 63, 793–841 (2000)

  23. 23

    Bertone, G., Hooper, D. & Silk, J. Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005)

  24. 24

    Goldberg, H. Constraint on the photino mass from cosmology. Phys. Rev. Lett. 50, 1419–1422 (1983); erratum. Phys. Rev. Lett. 103, 099905 (2009)

  25. 25

    Ellis, J. R., Hagelin, J. S., Nanopoulos, D. V., Olive, K. A. & Srednicki, M. Supersymmetric relics from the big bang. Nucl. Phys. B 238, 453–476 (1984)

  26. 26

    Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984)

  27. 27

    Jungman, G., Kamionkowski, M. & Griest, K. Supersymmetric dark matter. Phys. Rep. 267, 195–373 (1996)

  28. 28

    Goodman, M. W. & Witten, E. Detectability of certain dark-matter candidates. Phys. Rev. D 31, 3059–3063 (1985)

  29. 29

    Silk, J. & Srednicki, M. Cosmic-ray antiprotons as a probe of a photino-dominated universe. Phys. Rev. Lett. 53, 624–627 (1984)

  30. 30

    Silk, J., Olive, K. A. & Srednicki, M. The photino, the sun, and high-energy neutrinos. Phys. Rev. Lett. 55, 257–259 (1985)

  31. 31

    Adriani, O. et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458, 607–609 (2009)Discusses the discovery of an anomalous abundance of positrons with the PAMELA anti-matter satellite, tentatively interpreted in terms of the annihilation of dark matter particles.

  32. 32

    Galli, S., Iocco, F., Bertone, G. & Melchiorri, A. CMB constraints on Dark Matter models with large annihilation cross-section. Phys. Rev. D 80, 023505 (2009)

  33. 33

    Slatyer, T. R., Padmanabhan, N. & Finkbeiner, D. P. CMB constraints on WIMP annihilation: energy absorption during the recombination epoch. Phys. Rev. D 80, 043526 (2009)

  34. 34

    Cirelli, M., Kadastik, M., Raidal, M. & Strumia, A. Model-independent implications of the e± cosmic ray spectra on properties of Dark Matter. Nucl. Phys. B 813, 1–21 (2009)

  35. 35

    Bertone, G., Cirelli, M., Strumia, A. & Taoso, M. Gamma-ray and radio tests of the e± excess from DM annihilations. J. Cosmol. Astropart. Phys. 03, 009 (2009)

  36. 36

    Abdo, A. A. et al. Fermi LAT search for photon lines from 30 to 200 GeV and dark matter implications. Phys. Rev. Lett. 104, 091302 (2010)

  37. 37

    Halzen, F. & Hooper, D. The indirect search for dark matter with IceCube. New J. Phys. 11, 105019 (2009)

  38. 38

    Profumo, S. & Ullio, P. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 547–564 (Cambridge Univ. Press, 2010)

  39. 39

    Ando, S. & Komatsu, E. Anisotropy of the cosmic gamma-ray background from dark matter. Phys. Rev. D 73, 023521 (2006)

  40. 40

    Gaitskell, R. Direct detection of dark matter. Annu. Rev. Nucl. Part. Sci. 54, 315–359 (2004)

  41. 41

    Bernabei, R. et al. First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56, 333–355 (2008)

  42. 42

    Fornengo, N. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 383–391 (Cambridge Univ. Press, 2010)

  43. 43

    Aalseth, C. E. et al. Results from a search for light-mass dark matter with a P-type point. Preprint at 〈http://arXiv.org/abs/1002.4703〉 (2010)

  44. 44

    Aprile, E. et al. First dark matter results from the XENON100 experiment. Preprint at 〈http://arXiv.org/abs/1005.0380〉 (2010)

  45. 45

    Savage, C., Gelmini, G., Gondolo, P. & Freese, K. XENON10/100 dark matter constraints in comparison with CoGeNT and DAMA: examining the Leff dependence. Preprint at 〈http://arXiv.org/abs/1006.0972〉 (2010)

  46. 46

    Ahmed, Z. et al. Results from the final exposure of the CDMS II experiment. Preprint at 〈http://arXiv.org/abs/0912.3592〉 (2009)

  47. 47

    Green, A. M. Determining the WIMP mass from a single direct detection experiment, a more detailed study. J. Cosmol. Astropart. Phys. 07, 005 (2008)

  48. 48

    Drees, M. & Shan, C. L. Model-independent determination of the WIMP mass from direct dark matter. J. Cosmol. Astropart. Phys. 06, 012 (2008)

  49. 49

    Bertone, G., Cerdeño, D. G., Collar, J. I. & Odom, B. C. WIMP identification through a combined measurement of axial and scalar couplings. Phys. Rev. Lett. 99, 151301 (2007)

  50. 50

    Battaglia, M. et al. Updated post-WMAP benchmarks for supersymmetry. Eur. Phys. J. C 33, 273–296 (2004)

  51. 51

    Trotta, R., Feroz, F., Hobson, M. P., Roszkowski, L. & Ruiz de Austri, R. The impact of priors and observables on parameter inferences in the constrained MSSM. J. High Energy Phys. 12, 024 (2008)

  52. 52

    Baltz, E. A. & Gondolo, P. Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter. J. High Energy Phys. 0410, 052 (2004)

  53. 53

    Strigari, L. E. Neutrino coherent scattering rates at direct dark matter detectors. New J. Phys. 11, 105011 (2009)

  54. 54

    Ellis, J. & Olive, K. A. in Particle Dark Matter: Observations, Models and Searches (ed. Bertone, G.) 142–162 (Cambridge Univ. Press, 2010)

  55. 55

    Nath, P. et al. The hunt for new physics at the Large Hadron Collider. Nucl. Phys. Proc., Suppl. 200–202, 185 (2010)

  56. 56

    Baltz, E. A., Battaglia, M., Peskin, M. E. & Wizansky, T. Determination of dark matter properties at high-energy colliders. Phys. Rev. D 74, 103521 (2006)

  57. 57

    Bertone, G., Cerdeno, D. G., Fornasa, M., de Austri, R. R. & Trotta, R. Identification of dark matter particles with LHC and direct detection data. Phys. Rev. D (in the press); preprint at 〈http://arXiv.org/abs/1005.4280〉 (2010)Shows how to combine in a consistent way data from direct and accelerator searches, and highlights the complementarity of these two search strategies.

  58. 58

    Gondolo P et al. DarkSUSY: Computing supersymmetric dark matter properties numerically. J. Cosmol. Astropart. Phys. 07, 008 (2004)

Download references

Author information

Correspondence to Gianfranco Bertone.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bertone, G. The moment of truth for WIMP dark matter. Nature 468, 389–393 (2010) doi:10.1038/nature09509

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.