Oligomeric organization of the B-cell antigen receptor on resting cells

Abstract

B lymphocytes are activated by many different antigens to produce specific antibodies protecting higher organisms from infection. To detect its cognate antigen, each B cell contains up to 120,000 B-cell antigen receptor (BCR) complexes on its cell surface. How these abundant receptors stay silent on resting B cells and how they can be activated by a molecularly diverse set of ligands is poorly understood1. Here we show, with the use of a quantitative bifluorescence complementation assay (BiFC)2,3, that the BCR has an intrinsic ability to form oligomers on the surface of living cells. A BCR mutant that fails to form oligomers is more active and cannot be expressed stably on the B-cell surface, whereas BiFC-stabilized BCR oligomers are less active and more strongly expressed on the surface. We propose that oligomers are the autoinhibited form of the BCR and that it is the shift from closed BCR oligomers to clustered monomers that drives B-cell activation in a way that is independent of the structural input from the antigen.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: BCR oligomers on S2 cell surface detected by BiFC and IP-FCM.
Figure 2: A double-mutant IgD–BCR complex without oligomerization.
Figure 3: Monomeric BCR is not stably expressed on the B-cell surface.
Figure 4: Oligomeric BCR is highly expressed and autoinhibited.

References

  1. 1

    Reth, M. Oligomeric antigen receptors: a new view on signaling for the selection of lymphocytes. Trends Immunol. 22, 356–360 (2001)

    CAS  Article  Google Scholar 

  2. 2

    Kerppola, T. K. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu. Rev. Biophys. 37, 465–487 (2008)

    CAS  Article  Google Scholar 

  3. 3

    Hu, C.-D., Chinenov, Y. & Kerppola, T. K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798 (2002)

    CAS  Article  Google Scholar 

  4. 4

    Venkitaraman, A. R., Williams, G. T., Dariavach, P. & Neuberger, M. S. The B-cell antigen receptor of the five immunoglobulin classes. Nature 352, 777–781 (1991)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Engels, N., Engelke, M. & Wienands, J. Conformational plasticity and navigation of signaling proteins in antigen-activated B lymphocytes. Adv. Immunol. 97, 251–281 (2008)

    CAS  Article  Google Scholar 

  6. 6

    Schamel, W. W. & Reth, M. Monomeric and oligomeric complexes of the B cell antigen receptor. Immunity 13, 5–14 (2000)

    CAS  Article  Google Scholar 

  7. 7

    Tolar, P., Sohn, H. W. & Pierce, S. K. The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nature Immunol. 6, 1168–1176 (2005)

    CAS  Article  Google Scholar 

  8. 8

    Tolar, P., Sohn, H. W. & Pierce, S. K. Viewing the antigen-induced initiation of B-cell activation in living cells. Immunol. Rev. 221, 64–76 (2008)

    CAS  Article  Google Scholar 

  9. 9

    Rolli, V. et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell 10, 1057–1069 (2002)

    CAS  Article  Google Scholar 

  10. 10

    Schrum, A. G. et al. High-sensitivity detection and quantitative analysis of native protein–protein interactions and multiprotein complexes by flow cytometry. Sci. STKE 2007, pl2 (2007)

    PubMed  PubMed Central  Google Scholar 

  11. 11

    Hu, C.-D. & Kerppola, T. K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nature Biotechnol. 21, 539–545 (2003)

    CAS  Article  Google Scholar 

  12. 12

    Siegers, G. M. et al. Identification of disulfide bonds in the Ig-α/Ig-β component of the B cell antigen receptor using the Drosophila S2 cell reconstitution system. Int. Immunol. 18, 1385–1396 (2006)

    CAS  Article  Google Scholar 

  13. 13

    Minguet, S., Swamy, M., Alarcon, B., Luescher, I. F. & Schamel, W. W. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26, 43–54 (2007)

    CAS  Article  Google Scholar 

  14. 14

    Gil, D., Schamel, W. W. A., Montoya, M., Sánchez-Madrid, F. & Alarcón, B. Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002)

    CAS  Article  Google Scholar 

  15. 15

    Meixlsperger, S. et al. Conventional light chains inhibit the autonomous signaling capacity of the B cell receptor. Immunity 26, 323–333 (2007)

    CAS  Article  Google Scholar 

  16. 16

    Schamel, W. W. et al. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J. Exp. Med. 202, 493–503 (2005)

    CAS  Article  Google Scholar 

  17. 17

    Lillemeier, B. F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nature Immunol. 11, 90–96 (2010)

    CAS  Article  Google Scholar 

  18. 18

    Kim, J.-H., Cramer, L., Mueller, H., Wilson, B. & Vilen, B. J. Independent trafficking of Ig-α/Ig-β and μ-heavy chain is facilitated by dissociation of the B cell antigen receptor complex. J. Immunol. 175, 147–154 (2005)

    CAS  Article  Google Scholar 

  19. 19

    Treanor, B. et al. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 32, 187–199 (2010)

    CAS  Article  Google Scholar 

  20. 20

    Monroe, J. G. ITAM-mediated tonic signalling through pre-BCR and BCR complexes. Nature Rev. Immunol. 6, 283–294 (2006)

    CAS  Article  Google Scholar 

  21. 21

    Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117, 787–800 (2004)

    CAS  Article  Google Scholar 

  22. 22

    Kim, Y.-M. et al. Monovalent ligation of the B cell receptor induces receptor activation but fails to promote antigen presentation. Proc. Natl Acad. Sci. USA 103, 3327–3332 (2006)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Harwood, N. E. & Batista, F. D. New insights into the early molecular events underlying B cell activation. Immunity 28, 609–619 (2008)

    CAS  Article  Google Scholar 

  24. 24

    Semichon, M., Merle-Béral, H., Lang, V. & Bismuth, G. Normal Syk protein level but abnormal tyrosine phosphorylation in B-CLL cells. Leukemia 11, 1921–1928 (1997)

    CAS  Article  Google Scholar 

  25. 25

    Pugh-Bernard, A. E. & Cambier, J. C. B cell receptor signaling in human systemic lupus erythematosus. Curr. Opin. Rheumatol. 18, 451–455 (2006)

    CAS  Article  Google Scholar 

  26. 26

    Peng, S. L. Altered T and B lymphocyte signaling pathways in lupus. Autoimmun. Rev. 8, 179–183 (2009)

    CAS  Article  Google Scholar 

  27. 27

    Payelle-Brogard, B., Magnac, C., Alcover, A., Roux, P. & Dighiero, G. Defective assembly of the B-cell receptor chains accounts for its low expression in B-chronic lymphocytic leukaemia. Br. J. Haematol. 118, 976–985 (2002)

    CAS  Article  Google Scholar 

  28. 28

    Lankester, A. C., Schijndel, G. M., Pakker, N. G., Van Oers, R. H. & van Lier, R. A. Antigen receptor function in chronic lymphocytic leukemia B cells. Leuk. Lymphoma 24, 27–33 (1996)

    CAS  Article  Google Scholar 

  29. 29

    Kawauchi, K., Ogasawara, T. & Yasuyama, M. Activation of extracellular signal-regulated kinase through B-cell antigen receptor in B-cell chronic lymphocytic leukemia. Int. J. Hematol. 75, 508–513 (2002)

    CAS  Article  Google Scholar 

  30. 30

    Chiorazzi, N. & Ferrarini, M. B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu. Rev. Immunol. 21, 841–894 (2003)

    CAS  Article  Google Scholar 

  31. 31

    Storch, B., Meixlsperger, S. & Jumaa, H. The Ig-α ITAM is required for efficient differentiation but not proliferation of pre-B cells. Eur. J. Immunol. 37, 252–260 (2007)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Leclercq, P. Nielsen, H. Jumaa and W. Schamel for critical reading of this manuscript. This study was supported by the Excellence Initiative of the German Federal and State Governments (EXC 294), by the Deutsche Forschungsgemeinschaft through SFB746 and by the FRISYS programme.

Author information

Affiliations

Authors

Contributions

All experiments were planned by M.R. and J.Y. and conducted by J.Y. The manuscript was prepared by M.R. with J.Y.

Corresponding author

Correspondence to Michael Reth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-12 with legends. (PDF 2048 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, J., Reth, M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature 467, 465–469 (2010). https://doi.org/10.1038/nature09357

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing