Translating cancer research into targeted therapeutics


The emphasis in cancer drug development has shifted from cytotoxic, non-specific chemotherapies to molecularly targeted, rationally designed drugs promising greater efficacy and less side effects. Nevertheless, despite some successes drug development remains painfully slow. Here, we highlight the issues involved and suggest ways in which this process can be improved and expedited. We envision an increasing shift to integrated cancer research and biomarker-driven adaptive and hypothesis testing clinical trials. The goal is the development of specific cancer medicines to treat the individual patient, with treatment selection being driven by a detailed understanding of the genetics and biology of the patient and their cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 2
Figure 3
Figure 4: Left panel, pre-treatment samples; right panel, post-treatment assay following patient treatment with PARP inhibitor olaparib.
Figure 5: Computerized axial tomography (CAT) scans of BRCA mutation carrier ovarian cancer patients treated with olaparib taken before (left), and after (right), olaparib treatment.
Figure 1: Proof of concept studies: castration resistant prostate cancer remains hormone driven and is highly sensitive to CYP17 blockade by abiraterone.


  1. 1

    Workman, P. & de Bono, J. Targeted therapeutics for cancer treatment: major progress towards personalised molecular medicine. Curr. Opin. Pharmacol. 8, 359–362 (2008)

    CAS  Google Scholar 

  2. 2

    Carden, C. P., Banerji, U., Kaye, S. B., Workman, P. & de Bono, J. S. From darkness to light with biomarkers in early clinical trials of cancer drugs. Clin. Pharmacol. Ther. 85, 131–133 (2009)

    CAS  Google Scholar 

  3. 3

    DiMasi, J. A. & Grabowski, H. G. Economics of new oncology drug development. J. Clin. Oncol. 25, 209–216 (2007)

    Google Scholar 

  4. 4

    Carden, C. P. et al. Can molecular biomarker-based patient selection in Phase I trials accelerate anticancer drug development? Drug Discov. Today 15, 88–97 (2009)

    Google Scholar 

  5. 5

    Betensky, R. A., Louis, D. N. & Cairncross, J. G. Influence of unrecognized molecular heterogeneity on randomized clinical trials. J. Clin. Oncol. 20, 2495–2499 (2002)

    Google Scholar 

  6. 6

    Sobrero, A. & Bruzzi, P. Incremental advance or seismic shift? The need to raise the bar of efficacy for drug approval. J. Clin. Oncol. 27, 5868–5873 (2009)

    Google Scholar 

  7. 7

    Collins, I. & Workman, P. New approaches to molecular cancer therapeutics. Nature Chem. Biol. 2, 689–700 (2006)

    CAS  Google Scholar 

  8. 8

    de Bono, J. S., Tolcher, A. W. & Rowinsky, E. K. The future of cytotoxic therapy: selective cytotoxicity based on biology is the key. Breast Cancer Res. 5, 154–159 (2003)

    CAS  Google Scholar 

  9. 9

    Sawyers, C. L. The cancer biomarker problem. Nature 452, 548–552 (2008)A thoughtful discussion of the cancer biomarker problem.

    CAS  Google Scholar 

  10. 10

    Weinstein, I. B. Cancer. addiction to oncogenes–the Achilles heal of cancer. Science 297, 63–64 (2002)

    CAS  Google Scholar 

  11. 11

    Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009)An important review updating the hallmarks of cancer originally proposed by Hanahan and Weinberg (ref. 14) and summarising new approaches to cancer therapy.

    CAS  Google Scholar 

  12. 12

    Ashworth, A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J. Clin. Oncol. 26, 3785–3790 (2008)

    CAS  Google Scholar 

  13. 13

    Kaelin, W. G., Jr The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer 5, 689–698 (2005)

    CAS  Google Scholar 

  14. 14

    Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000)

    CAS  Google Scholar 

  15. 15

    Iorns, E., Lord, C. J., Turner, N. & Ashworth, A. Utilizing RNA interference to enhance cancer drug discovery. Nature Rev. Drug Discov. 6, 556–568 (2007)

    CAS  Google Scholar 

  16. 16

    Hennessy, B. T., Gonzalez-Angulo, A. M., Carey, M. S. & Mills, G. B. A systems approach to analysis of molecular complexity in breast cancer. Clin. Cancer Res. 15, 417–419 (2009)

    CAS  Google Scholar 

  17. 17

    Kreeger, P. K. & Lauffenburger, D. A. Cancer systems biology: a network modeling perspective. Carcinogenesis 31, 2–8 (2010)

    CAS  Google Scholar 

  18. 18

    Becher, O. J. & Holland, E. C. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res. 66, 3355–3359 (2006)

    CAS  Google Scholar 

  19. 19

    Sausville, E. A. & Burger, A. M. Contributions of human tumor xenografts to anticancer drug development. Cancer Res. 66, 3351–3354,–discussion 3354 (2006)

    Google Scholar 

  20. 20

    Lord, C. J. & Ashworth, A. Biology-driven cancer drug development: back to the future. BMC Biol. 8, 38 (2010)

    Google Scholar 

  21. 21

    Goodsaid, F. & Frueh, F. Biomarker qualification pilot process at the US Food and Drug Administration. AAPS J. 9, E105–E108 (2007)

    CAS  Google Scholar 

  22. 22

    Workman, P. et al. Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J. Natl. Cancer Inst. 98, 580–598 (2006)

    CAS  Google Scholar 

  23. 23

    Attard, G. et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 69, 2912–2918 (2009)

    CAS  Google Scholar 

  24. 24

    de Bono, J. S. et al. Potential applications for circulating tumor cells expressing the insulin-like growth factor-I receptor. Clin. Cancer Res. 13, 3611–3616 (2007)

    CAS  Google Scholar 

  25. 25

    Grantab, R., Sivananthan, S. & Tannock, I. F. The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res. 66, 1033–1039 (2006)

    CAS  Google Scholar 

  26. 26

    Propper, D. J. et al. Use of positron emission tomography in pharmacokinetic studies to investigate therapeutic advantage in a phase I study of 120-hour intravenous infusion XR5000. J. Clin. Oncol. 21, 203–210 (2003)

    CAS  Google Scholar 

  27. 27

    Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nature Rev. Cancer 6, 583–592 (2006)

    CAS  Google Scholar 

  28. 28

    Mandrekar, S. J. & Sargent, D. J. Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J. Clin. Oncol. 27, 4027–4034 (2009)

    Google Scholar 

  29. 29

    Taube, S. E. et al. A perspective on challenges and issues in biomarker development and drug and biomarker codevelopment. J. Natl. Cancer Inst. 101, 1453–1463 (2009)

    Google Scholar 

  30. 30

    Fong, P. C. et al. Inhibition of Poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009)Clinical evidence of the efficacy of a synthetic lethal therapeutic approach for cancer.

    CAS  Google Scholar 

  31. 31

    Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001)Landmark paper demonstrating efficacy of imatinib in CML.

    CAS  Google Scholar 

  32. 32

    Soda, M. et al. Identification of the transforming EML4ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007)

    CAS  Google Scholar 

  33. 33

    van Oosterom, A. T. et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358, 1421–1423 (2001)

    CAS  Google Scholar 

  34. 34

    Verweij, J. et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364, 1127–1134 (2004)

    CAS  Google Scholar 

  35. 35

    Von Hoff, D. D. et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med. 361, 1164–1172 (2009)

    CAS  Google Scholar 

  36. 36

    Jordan, V. C. Is tamoxifen the Rosetta stone for breast cancer? J. Natl. Cancer Inst. 95, 338–340 (2003)

    Google Scholar 

  37. 37

    Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001)

    CAS  Google Scholar 

  38. 38

    Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008)

    CAS  Google Scholar 

  39. 39

    Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009)

    CAS  Google Scholar 

  40. 40

    Kantarjian, H. et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N. Engl. J. Med. 354, 2542–2551 (2006)

    Google Scholar 

  41. 41

    Shah, N. P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004)

    CAS  Google Scholar 

  42. 42

    Talpaz, M. et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 354, 2531–2541 (2006)

    CAS  Google Scholar 

  43. 43

    Sarker, D., Reid, A. H. M., Yap, T. A. & de Bono, J. S. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin. Cancer Res. 15, 4799–4805 (2009)

    CAS  Google Scholar 

  44. 44

    Yap, T. A. et al. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr. Opin. Pharmacol. 8, 393–412 (2008)

    CAS  Google Scholar 

  45. 45

    Ingle, J. N. et al. Randomized clinical trial of diethylstilbestrol versus tamoxifen in postmenopausal women with advanced breast cancer. N. Engl. J. Med. 304, 16–21 (1981)

    CAS  Google Scholar 

  46. 46

    Attard, G., Ang, J. E., Olmos, D. & de Bono, J. S. Dissecting prostate carcinogenesis through ETS gene rearrangement studies: implications for anticancer drug development. J. Clin. Pathol. 61, 891–896 (2008)

    CAS  Google Scholar 

  47. 47

    Reid, A. H. M. et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br. J. Cancer 102, 678–684 (2010)

    CAS  Google Scholar 

  48. 48

    Attard, G., Cooper, C. S. & de Bono, J. S. Steroid hormone receptors in prostate cancer: a hard habit to break? Cancer Cell 16, 458–462 (2009)

    CAS  Google Scholar 

  49. 49

    Attard, G. et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 26, 4563–4571 (2008)First clinical evidence to definitely prove that advanced castration resistant prostate cancer remains hormone driven.

    CAS  Google Scholar 

  50. 50

    Attard, G. et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J. Clin. Oncol. 27, 3742–3748 (2009)

    CAS  Google Scholar 

  51. 51

    Tomlins, S. A. et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448, 595–599 (2007)

    CAS  Google Scholar 

  52. 52

    Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005)

    CAS  Google Scholar 

  53. 53

    Attard, G. & de Bono, J. S. Prostate cancer: PSA as an intermediate end point in clinical trials. Nature Rev. Urol. 6, 473–475 (2009)

    Google Scholar 

  54. 54

    Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009)

    CAS  Google Scholar 

  55. 55

    Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl. Cancer Inst. 92, 205–216 (2000)

    CAS  Google Scholar 

  56. 56

    Budd, G. T. et al. Circulating tumor cells versus imaging–predicting overall survival in metastatic breast cancer. Clin. Cancer Res. 12, 6403–6409 (2006)

    CAS  Google Scholar 

  57. 57

    Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004)

    CAS  Google Scholar 

  58. 58

    de Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008)

    CAS  Google Scholar 

  59. 59

    De Giorgi, U. et al. Circulating tumor cells and [18F]fluorodeoxyglucose positron emission tomography/computed tomography for outcome prediction in metastatic breast cancer. J. Clin. Oncol. 27, 3303–3311 (2009)

    Google Scholar 

  60. 60

    Olmos, D. et al. Circulating tumour cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. Ann. Oncol. 20, 27–33 (2009)

    CAS  Google Scholar 

  61. 61

    Dowsett, M. et al. Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J. Natl. Cancer Inst. 99, 167–170 (2007)

    CAS  Google Scholar 

  62. 62

    Greystoke, A. et al. Optimisation of circulating biomarkers of cell death for routine clinical use. Ann. Oncol. 19, 990–995 (2008)

    CAS  Google Scholar 

  63. 63

    Rosen, J. M. & Jordan, C. T. The increasing complexity of the cancer stem cell paradigm. Science 324, 1670–1673 (2009)

    CAS  Google Scholar 

  64. 64

    Buyse, M. et al. Progression-free survival is a surrogate for survival in advanced colorectal cancer. J. Clin. Oncol. 25, 5218–5224 (2007)

    CAS  Google Scholar 

  65. 65

    Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D. & Geys, H. The validation of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics 1, 49–67 (2000)

    CAS  Google Scholar 

  66. 66

    Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005)Preclinical evidence indicating the potential of synthetic lethality as a therapeutic strategy for BRCA-mutation associated cancers.

    CAS  Google Scholar 

  67. 67

    Reid, A. H. M. et al. Significant and sustained antitumor activity in post-docetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate. J. Clin. Oncol. 28, 1489–1495 (2010)

    CAS  Google Scholar 

  68. 68

    Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010)

    CAS  Google Scholar 

  69. 69

    Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature advance online publication doi:10.1038/nature09454 (7 September 2010)

  70. 70

    Kwak, E. L. et al. Clinical activity observed in a Phase I dose escalation trial of an oral c-met and ALK inhibitor, PF-02341066. J. Clin. Oncol. (Meeting abstracts) 27, 3509 (2009)

    Google Scholar 

Download references

Author information




Both authors contributed equally to the generation of this manuscript.

Corresponding authors

Correspondence to J. S. de Bono or Alan Ashworth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Bono, J., Ashworth, A. Translating cancer research into targeted therapeutics. Nature 467, 543–549 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.