Heterochromatin silencing of p53 target genes by a small viral protein


The transcription factor p53 (also known as TP53) guards against tumour and virus replication and is inactivated in almost all cancers. p53-activated transcription of target genes is thought to be synonymous with the stabilization of p53 in response to oncogenes and DNA damage. During adenovirus replication, the degradation of p53 by E1B-55k is considered essential for p53 inactivation, and is the basis for p53-selective viral cancer therapies. Here we reveal a dominant epigenetic mechanism that silences p53-activated transcription, irrespective of p53 phosphorylation and stabilization. We show that another adenoviral protein, E4-ORF3, inactivates p53 independently of E1B-55k by forming a nuclear structure that induces de novo H3K9me3 heterochromatin formation at p53 target promoters, preventing p53–DNA binding. This suppressive nuclear web is highly selective in silencing p53 promoters and operates in the backdrop of global transcriptional changes that drive oncogenic replication. These findings are important for understanding how high levels of wild-type p53 might also be inactivated in cancer as well as the mechanisms that induce aberrant epigenetic silencing of tumour-suppressor loci. Our study changes the longstanding definition of how p53 is inactivated in adenovirus infection and provides key insights that could enable the development of true p53-selective oncolytic viral therapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: p53 is induced and phosphorylated in ΔE1B-55k infection but p53 activity is dominantly suppressed.
Figure 2: E4-ORF3 inactivates p53 independently of E1B-55k and p53 degradation.
Figure 3: E4-ORF3 induces heterochromatin formation and prevents p53–DNA binding at endogenous promoters.
Figure 4: E4-ORF3 forms a nuclear scaffold that specifies heterochromatin assembly and H3K9 trimethylation at p53 target promoters.
Figure 5: p53 transcriptional targets are silenced selectively in the backdrop of global transcriptional changes that drive oncogenic cellular and viral replication.

Accession codes

Primary accessions

Gene Expression Omnibus


  1. 1

    Levine, A. J. The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. Virology 384, 285–293 (2009)

    CAS  Article  Google Scholar 

  2. 2

    Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Linzer, D. I. & Levine, A. J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43–52 (1979)

    CAS  Article  Google Scholar 

  4. 4

    Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009)

    CAS  Article  Google Scholar 

  6. 6

    Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Lowe, S. W. & Ruley, H. E. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev. 7, 535–545 (1993)

    CAS  Article  Google Scholar 

  8. 8

    Lakin, N. D. & Jackson, S. P. Regulation of p53 in response to DNA damage. Oncogene 18, 7644–7655 (1999)

    CAS  Article  Google Scholar 

  9. 9

    Sherr, C. J. Divorcing ARF and p53: an unsettled case. Nature Rev. Cancer 6, 663–673 (2006)

    CAS  Article  Google Scholar 

  10. 10

    Chen, X., Ko, L. J., Jayaraman, L. & Prives, C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10, 2438–2451 (1996)

    CAS  Article  Google Scholar 

  11. 11

    Lane, D. P. Exploiting the p53 pathway for the diagnosis and therapy of human cancer. Cold Spring Harb. Symp. Quant. Biol. 70, 489–497 (2005)

    CAS  Article  Google Scholar 

  12. 12

    Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Bischoff, J. R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Debbas, M. & White, E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev. 7, 546–554 (1993)

    CAS  Article  Google Scholar 

  15. 15

    Harada, J. N., Shevchenko, A., Pallas, D. C. & Berk, A. J. Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J. Virol. 76, 9194–9206 (2002)

    CAS  Article  Google Scholar 

  16. 16

    Querido, E. et al. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev. 15, 3104–3117 (2001)

    CAS  Article  Google Scholar 

  17. 17

    Berk, A. J. Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24, 7673–7685 (2005)

    CAS  Article  Google Scholar 

  18. 18

    Barker, D. D. & Berk, A. J. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156, 107–121 (1987)

    CAS  Article  Google Scholar 

  19. 19

    Khuri, F. R. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med. 6, 879–885 (2000)

    CAS  Article  Google Scholar 

  20. 20

    McCormick, F. Cancer-specific viruses and the development of ONYX-015. Cancer Biol. Ther. 2, S157–S160 (2003)

    CAS  Article  Google Scholar 

  21. 21

    O’Shea, C. C. et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 6, 611–623 (2004)

    Article  Google Scholar 

  22. 22

    O’Shea, C. C., Soria, C., Bagus, B. & McCormick, F. Heat shock phenocopies E1B-55K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy. Cancer Cell 8, 61–74 (2005)

    Article  Google Scholar 

  23. 23

    Ries, S. J. et al. Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015). Nature Med. 6, 1128–1133 (2000)

    CAS  Article  Google Scholar 

  24. 24

    Olsson, A., Manzl, C., Strasser, A. & Villunger, A. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ. 14, 1561–1575 (2007)

    CAS  Article  Google Scholar 

  25. 25

    Espinosa, J. M., Verdun, R. E. & Emerson, B. M. p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol. Cell 12, 1015–1027 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Gannon, J. V., Greaves, R., Iggo, R. & Lane, D. P. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 9, 1595–1602 (1990)

    CAS  Article  Google Scholar 

  27. 27

    El-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W. & Vogelstein, B. Definition of a consensus binding site for p53. Nature Genet. 1, 45–49 (1992)

    CAS  Article  Google Scholar 

  28. 28

    Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007)

    CAS  Article  Google Scholar 

  29. 29

    Bachman, K. E. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3, 89–95 (2003)

    CAS  Article  Google Scholar 

  30. 30

    Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001)

    CAS  Article  Google Scholar 

  31. 31

    Rice, J. C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12, 1591–1598 (2003)

    CAS  Article  Google Scholar 

  32. 32

    Wang, H. et al. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol. Cell 12, 475–487 (2003)

    CAS  Article  Google Scholar 

  33. 33

    Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002)

    CAS  Article  Google Scholar 

  34. 34

    Whyte, P. et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124–129 (1988)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Ferrari, R. et al. Epigenetic reprogramming by adenovirus e1a. Science 321, 1086–1088 (2008)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Horwitz, G. A. et al. Adenovirus small e1a alters global patterns of histone modification. Science 321, 1084–1085 (2008)

    ADS  CAS  Article  Google Scholar 

  37. 37

    O’Shea, C. C. Viruses – seeking and destroying the tumor program. Oncogene 24, 7640–7655 (2005)

    Article  Google Scholar 

  38. 38

    Doucas, V. et al. Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev. 10, 196–207 (1996)

    CAS  Article  Google Scholar 

  39. 39

    Stracker, T. H., Carson, C. T. & Weitzman, M. D. Adenovirus oncoproteins inactivate the Mre11–Rad50–NBS1 DNA repair complex. Nature 418, 348–352 (2002)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Yondola, M. A. & Hearing, P. The adenovirus E4 ORF3 protein binds and reorganizes the TRIM family member transcriptional intermediary factor 1 alpha. J. Virol. 81, 4264–4271 (2007)

    CAS  Article  Google Scholar 

  41. 41

    Stott, F. J. et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014 (1998)

    CAS  Article  Google Scholar 

  42. 42

    Johnson, L. et al. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell 1, 325–337 (2002)

    CAS  Article  Google Scholar 

  43. 43

    Jones, N. & Shenk, T. An adenovirus type 5 early gene function regulates expression of other early viral genes. Proc. Natl Acad. Sci. USA 76, 3665–3669 (1979)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Shepard, R. N. & Ornelles, D. A. E4orf3 is necessary for enhanced S-phase replication of cell cycle-restricted subgroup C adenoviruses. J. Virol. 77, 8593–8595 (2003)

    CAS  Article  Google Scholar 

  45. 45

    Halbert, D. N., Cutt, J. R. & Shenk, T. Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J. Virol. 56, 250–257 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Cutt, J. R., Shenk, T. & Hearing, P. Analysis of adenovirus early region 4-encoded polypeptides synthesized in productively infected cells. J. Virol. 61, 543–552 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Huang, M. M. & Hearing, P. Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. J. Virol. 63, 2605–2615 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Marcellus, R. C. et al. Adenovirus type 5 early region 4 is responsible for E1A-induced p53-independent apoptosis. J. Virol. 70, 6207–6215 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005)

    CAS  Article  Google Scholar 

  50. 50

    Maehara, K. et al. Reduction of total E2F/DP activity induces senescence-like cell cycle arrest in cancer cells lacking functional pRB and p53. J. Cell Biol. 168, 553–560 (2005)

    CAS  Article  Google Scholar 

  51. 51

    Eberhardy, S. R. & Farnham, P. J. c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J. Biol. Chem. 276, 48562–48571 (2001)

    CAS  Article  Google Scholar 

  52. 52

    Downey, T. Analysis of a multifactor microarray study using Partek genomics solution. Methods Enzymol. 411, 256–270 (2006)

    CAS  Article  Google Scholar 

  53. 53

    Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003)

    CAS  Article  Google Scholar 

  54. 54

    Irizarry, R. A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 (2003)

    Article  Google Scholar 

  55. 55

    Berriz, G. F., King, O. D., Bryant, B., Sander, C. & Roth, F. P. Characterizing gene sets with FuncAssociate. Bioinformatics 19, 2502–2504 (2003)

    CAS  Article  Google Scholar 

  56. 56

    Yan, B. et al. Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-κB and other signal transcription factors in head and neck squamous cell carcinoma. Genome Biol. 8, R78 (2007)

    Article  Google Scholar 

  57. 57

    Quandt, K., Frech, K., Karas, H., Wingender, E. & Werner, T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23, 4878–4884 (1995)

    CAS  Article  Google Scholar 

  58. 58

    Hoh, J. et al. The p53MH algorithm and its application in detecting p53-responsive genes. Proc. Natl Acad. Sci. USA 99, 8467–8472 (2002)

    ADS  CAS  Article  Google Scholar 

Download references


We thank J. Fitzpatrick and the Waitt Advanced Biophotonics Center for assistance with imaging and analysis, J. Karlseder, I. Verma, T. Hunter, R. Shaw and the O’Shea laboratory for critical reading of this manuscript, L. Haro, S. Panda, R. O’Sullivan and A. Rodriguez for advice and protocols, and P. Branton and D. Ornelles for viruses. C.C.O. acknowledges funding from the Alliance of Cancer Gene Therapy, the American Cancer Society, the Sontag Foundation and the Beckman Foundation. This work was supported by R01CA137094 from the National Cancer Institute.

Author information




C.S. performed the p53 activation and virus studies, including immunoblotting, RT–qPCR and microarray experiments. F.E.E. performed all chromatin immunoprecipitation and immunofluorescence studies. K.C.E. performed the luciferase assays, E4-ORF3 sufficiency and complementation, and assisted C.S. with viral mutant studies. C.C.O. analysed the array data and wrote the paper with contributions from all authors. C.C.O. was responsible for the overall conceptual design and supervision of the studies.

Corresponding author

Correspondence to Clodagh C. O’Shea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Microarray data are deposited in NCBI's Gene Expression Omnibus (GSE20607).

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-31 with legends. (PDF 4657 kb)

Supplementary Tables

This file contains Supplementary Tables 1-5. (PDF 1228 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soria, C., Estermann, F., Espantman, K. et al. Heterochromatin silencing of p53 target genes by a small viral protein. Nature 466, 1076–1081 (2010). https://doi.org/10.1038/nature09307

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.