Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ordovician faunas of Burgess Shale type


The renowned soft-bodied faunas of the Cambrian period, which include the Burgess Shale, disappear from the fossil record in the late Middle Cambrian, after which the Palaeozoic fauna1 dominates. The disappearance of faunas of Burgess Shale type curtails the stratigraphic record of a number of iconic Cambrian taxa. One possible explanation for this loss is a major extinction2,3, but more probably it reflects the absence of preservation of similar soft-bodied faunas in later periods4. Here we report the discovery of numerous diverse soft-bodied assemblages in the Lower and Upper Fezouata Formations (Lower Ordovician) of Morocco, which include a range of remarkable stem-group morphologies normally considered characteristic of the Cambrian. It is clear that biotas of Burgess Shale type persisted after the Cambrian and are preserved where suitable facies occur. The Fezouata biota provides a link between the Burgess Shale communities and the early stages of the Great Ordovician Biodiversification Event.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Exceptionally preserved Burgess Shale-type organisms from the Early Ordovician Fezouata biota.
Figure 2: Exceptionally preserved post-Cambrian elements of the Fezouata biota.


  1. 1

    Sepkoski, J. J. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria. Paleobiology 5, 222–251 (1979)

    Article  Google Scholar 

  2. 2

    Conway Morris, S. The persistence of Burgess Shale-type faunas: implications for the evolution of deeper-water faunas. Trans. R. Soc. Edinb. Earth Sci. 80, 271–283 (1989)

    Google Scholar 

  3. 3

    Bambach, R. K., Knoll, A. H. & Wang, S. C. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30, 522–542 (2004)

    Article  Google Scholar 

  4. 4

    Allison, P. A. & Briggs, D. E. G. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21, 527–530 (1993)

    ADS  Article  Google Scholar 

  5. 5

    Farrell, U. C., Martin, M. J., Hagadorn, J. W., Whiteley, T. & Briggs, D. E. G. Beyond Beecher’s Trilobite Bed: Widespread pyritization of soft-tissues in the Late Ordovician Taconic Foreland Basin. Geology 37, 907–910 (2009)

    ADS  Article  Google Scholar 

  6. 6

    Aldridge, R. J., Gabbott, S. E. & Theron, J. N. in Palaeobiology II (eds Briggs, D. E. G. & Crowther, P. R.) 340–342 (Blackwell, 2001)

    Book  Google Scholar 

  7. 7

    Liu, H. P. et al. A new Lagerstätte from the Middle Ordovician St. Peter Formation in northeastern Iowa, USA. Geology 34, 969–972 (2006)

    ADS  Article  Google Scholar 

  8. 8

    Young, G. A., Rudkin, D. M., Dobrzanski, E. P., Robson, S. P. & Nowlan, G. S. Exceptionally preserved Late Ordovician biotas from Manitoba, Canada. Geology 35, 883–886 (2007)

    ADS  Article  Google Scholar 

  9. 9

    Droser, M. L. & Finnegan, S. The Ordovician radiation: a follow-up to the Cambrian explosion? Integr. Comp. Biol. 43, 178–184 (2003)

    Article  Google Scholar 

  10. 10

    Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G. eds. The Great Ordovician Biodiversification Event (Columbia Univ. Press, 2004)

    Book  Google Scholar 

  11. 11

    Harper, D. A. T. The Ordovician biodiversification: setting an agenda for marine life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 148–166 (2006)

    Article  Google Scholar 

  12. 12

    Bambach, R. K., Bush, A. M. & Erwin, D. H. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50, 1–22 (2007)

    Article  Google Scholar 

  13. 13

    Vandenbroucke, T. R. A., Gabbott, S. E., Paris, F., Aldridge, R. J. & Theron, J. N. Chitinozoans and the age of the Soom Shale, an Ordovician black shale Lagerstätte, South Africa. J. Micropalaeontol. 28, 53–66 (2009)

    Article  Google Scholar 

  14. 14

    Destombes, J., Hollard, H. & Willefert, S. in Lower Palaeozoic Rocks of the World Vol. 4, Lower Palaeozoic of North-Western and West-Central Africa (ed. Holland, C. H.) 91–336 (Wiley & Sons, 1985)

    Google Scholar 

  15. 15

    Zhang, X.-G., Bergström, J., Bromley, R. G. & Hou, X.-G. Diminutive trace fossils in the Chengjiang Lagerstätte. Terra Nova 19, 407–412 (2007)

    ADS  Article  Google Scholar 

  16. 16

    Vinther, J., Van Roy, P. & Briggs, D. E. G. Machaeridians are Palaeozoic armoured annelids. Nature 451, 185–188 (2008)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Gabbott, S. E., Hou, X.-G., Norry, M. J. & Siveter, D. J. Preservation of Early Cambrian animals of the Chengjiang biota. Geology 32, 901–904 (2004)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Clausen, S., Hou, X.-G., Bergström, J. & Franzén, C. The absence of echinoderms from the Lower Cambrian Chengjiang fauna of China: palaeoecological and palaeogeographical implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 10.1016/j.palaeo.2010.01.001 (published online 7 January 2010)

    Google Scholar 

  19. 19

    Botting, J. P. ‘Cambrian’ demosponges in the Ordovician of Morocco: insights into the early evolution of sponges. Geobios 40, 737–748 (2007)

    Article  Google Scholar 

  20. 20

    Butterfield, N. J. Secular distribution of Burgess Shale-type preservation. Lethaia 28, 1–13 (1995)

    Article  Google Scholar 

  21. 21

    Allison, P. A. & Briggs, D. E. G. in Taphonomy: Releasing Data Locked in the Fossil Record (eds Allison, P. A. & Briggs, D. E. G.) 25–70 (Plenum, 1991)

    Google Scholar 

  22. 22

    Allison, P. A. & Briggs, D. E. G. Burgess Shale-type biotas burrowed away? Lethaia 26, 184–185 (1993)

    Article  Google Scholar 

  23. 23

    Orr, P. J., Benton, M. J. & Briggs, D. E. G. Post-Cambrian closure of the deep-water slope-basin taphonomic window. Geology 31, 769–772 (2003)

    ADS  Article  Google Scholar 

  24. 24

    Conway Morris, S. Cambrian Lagerstätten: their distribution and significance. Phil. Trans. R. Soc. Lond. B 311, 49–65 (1985)

    ADS  Article  Google Scholar 

  25. 25

    Caron, J.-B., Rudkin, D. M. & Miliken, S. A new Late Silurian (Přidolian) naraoiid (Euarthropoda: Nektaspida) from the Bertie Formation of Southern Ontario, Canada — delayed fallout from the Cambrian Explosion. J. Paleontol. 78, 1138–1145 (2004)

    Article  Google Scholar 

  26. 26

    Kühl, G., Bergström, J. & Rust, J. Morphology, palaeobiology and phylogenetic position of Vachonisia rogeri (Arthropoda) from the Devonian Hunsrück Slate (Germany). Palaeontogr. Abt. A 286, 123–157 (2008)

    Google Scholar 

  27. 27

    Kühl, G., Briggs, D. E. G. & Rust, J. A great appendage arthropod with a radial mouth from the Lower Devonian Hunsrück Slate, Germany. Science 323, 771–773 (2009)

    ADS  Article  Google Scholar 

  28. 28

    Friend, D., Zhuravlev, A., Yu & Solov’ev, I. A. Middle Cambrian Eldonia from the Siberian Platform. Paleontol. J. 36, 20–24 (2002)

    Google Scholar 

  29. 29

    Alessandrello, A. & Bracchi, G. Eldonia berbera n. sp., a new species of the enigmatic genus Eldonia Walcott, 1911 from the Rawtheyan (Upper Ordovician) of Anti-Atlas (Erfoud, Tafilalt, Morocco). Atti Soc. Ital. Sci. Nat. Museo Civ. Stor. nat. Milano 144, 337–358 (2003)

    Google Scholar 

  30. 30

    Van Roy, P. An aglaspidid arthropod from the Upper Ordovician of Morocco with remarks on the affinities and limitations of Aglaspidida. Trans. R. Soc. Edinb. Earth Sci. 96, 327–350 (2006)

    Article  Google Scholar 

Download references


S. Butts (Yale Peabody Museum of Natural History), A. Prieur (Lyon 1 University), D. Berthet (Natural History Museum of Lyon), A. Médard-Blondel and S. Pichard (Natural History Museum of Marseille), G. Fleury (Natural History Museum of Toulouse), the National Museums of Scotland and the Sedgwick Museum provided access to specimens. M. Ben Said Ben Moula, W. and D. De Winter, B. MacGabhann, R. and V. Reboul-Baron, C. Upton, B. Van Bocxlaer, and D. and K. Van Damme assisted with fieldwork, and B. Tahiri arranged logistical support. E. Champion helped with the preparation of figures. J. De Grave and B. Van Bocxlaer (Ghent University) provided photographic equipment, and the Palaeontology and Petrology Research Units of Ghent University allowed use of their imaging facilities. P. and O. Van Roy-Lassaut financially aided fieldwork. This research was funded by an Agency for Innovation by Science and Technology (IWT) doctoral fellowship and by an Irish Research Council for Science, Engineering and Technology (IRCSET) – EMPOWER postdoctoral fellowship awarded to P.V.R. Fieldwork was supported by a National Geographic Society Research and Exploration grant.

Author information




All authors carried out field work and contributed to the interpretation of the fossils. P.V.R., P.J.O., J.P.B. and D.E.G.B. wrote the paper with input from the other authors.

Corresponding authors

Correspondence to Peter Van Roy or Derek E. G. Briggs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures S1-S3 with legends. (PDF 9575 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Van Roy, P., Orr, P., Botting, J. et al. Ordovician faunas of Burgess Shale type. Nature 465, 215–218 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing