Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Listeria monocytogenes impairs SUMOylation for efficient infection

An Author Correction to this article was published on 16 April 2020

Abstract

During infection, pathogenic bacteria manipulate the host cell in various ways to allow their own replication, propagation and escape from host immune responses. Post-translational modifications are unique mechanisms that allow cells to rapidly, locally and specifically modify activity or interactions of key proteins. Some of these modifications, including phosphorylation and ubiquitylation1,2, can be induced by pathogens. However, the effects of pathogenic bacteria on SUMOylation, an essential post-translational modification in eukaryotic cells3, remain largely unknown. Here we show that infection with Listeria monocytogenes leads to a decrease in the levels of cellular SUMO-conjugated proteins. This event is triggered by the bacterial virulence factor listeriolysin O (LLO), which induces a proteasome-independent degradation of Ubc9, an essential enzyme of the SUMOylation machinery, and a proteasome-dependent degradation of some SUMOylated proteins. The effect of LLO on Ubc9 is dependent on the pore-forming capacity of the toxin and is shared by other bacterial pore-forming toxins like perfringolysin O (PFO) and pneumolysin (PLY). Ubc9 degradation was also observed in vivo in infected mice. Furthermore, we show that SUMO overexpression impairs bacterial infection. Together, our results reveal that Listeria, and probably other pathogens, dampen the host response by decreasing the SUMOylation level of proteins critical for infection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Decrease in SUMO-conjugated proteins upon infection with Listeria.
Figure 2: L. monocytogenes induces a specific degradation of Ubc9.
Figure 3: Characterization of LLO-mediated Ubc9 degradation.
Figure 4: Roles of SUMOylation in Listeria infection.

References

  1. 1

    Hamon, M. A. & Cossart, P. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe 4, 100–109 (2008)

    CAS  Article  Google Scholar 

  2. 2

    Rytkonen, A. & Holden, D. W. Bacterial interference of ubiquitination and deubiquitination. Cell Host Microbe 1, 13–22 (2007)

    CAS  Article  Google Scholar 

  3. 3

    Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nature Rev. Mol. Cell Biol. 8, 947–956 (2007)

    CAS  Article  Google Scholar 

  4. 4

    Cossart, P. & Toledo-Arana, A. Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect. 10, 1041–1050 (2008)

    CAS  Article  Google Scholar 

  5. 5

    Veiga, E. & Cossart, P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nature Cell Biol. 7, 894–900 (2005)

    CAS  Article  Google Scholar 

  6. 6

    Bonazzi, M., Veiga, E., Cerda, J. P. & Cossart, P. Successive post-translational modifications of E-cadherin are required for InlA-mediated internalisation of Listeria monocytogenes. Cell. Microbiol. 10, 2208–2222 (2008)

    CAS  Article  Google Scholar 

  7. 7

    Hamon, M. A. et al. Histone modifications induced by a family of bacterial toxins. Proc. Natl Acad. Sci. USA 104, 13467–13472 (2007)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Vertegaal, A. C. et al. Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell. Proteomics 5, 2298–2310 (2006)

    CAS  Article  Google Scholar 

  9. 9

    Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422–429 (2009)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Nacerddine, K. et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9, 769–779 (2005)

    CAS  Article  Google Scholar 

  11. 11

    Hay, R. T. SUMO-specific proteases: a twist in the tail. Trends Cell Biol. 17, 370–376 (2007)

    CAS  Article  Google Scholar 

  12. 12

    Zhao, J. Sumoylation regulates diverse biological processes. Cell. Mol. Life Sci. 64, 3017–3033 (2007)

    CAS  Article  Google Scholar 

  13. 13

    Boggio, R. & Chiocca, S. Viruses and sumoylation: recent highlights. Curr. Opin. Microbiol. 9, 430–436 (2006)

    CAS  Article  Google Scholar 

  14. 14

    Gevaert, K. et al. Stable isotopic labeling in proteomics. Proteomics 8, 4873–4885 (2008)

    CAS  Article  Google Scholar 

  15. 15

    Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258 (2000)

    CAS  Article  Google Scholar 

  16. 16

    Golebiowski, F. et al. System-wide changes to SUMO modifications in response to heat shock. Sci. Signal. 2, ra24 (2009)

    Article  Google Scholar 

  17. 17

    Schnupf, P. & Portnoy, D. A. Listeriolysin O: a phagosome-specific lysin. Microbes Infect. 9, 1176–1187 (2007)

    CAS  Article  Google Scholar 

  18. 18

    Matunis, M. J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470 (1996)

    CAS  Article  Google Scholar 

  19. 19

    Nato, F. et al. Production and characterization of neutralizing and nonneutralizing monoclonal antibodies against listeriolysin O. Infect. Immun. 59, 4641–4646 (1991)

    CAS  Article  Google Scholar 

  20. 20

    Michel, E., Reich, K. A., Favier, R., Berche, P. & Cossart, P. Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol. Microbiol. 4, 2167–2178 (1990)

    CAS  Article  Google Scholar 

  21. 21

    Hotze, E. M. et al. Monomer-monomer interactions drive the prepore to pore conversion of a beta-barrel-forming cholesterol-dependent cytolysin. J. Biol. Chem. 277, 11597–11605 (2002)

    CAS  Article  Google Scholar 

  22. 22

    Boggio, R., Colombo, R., Hay, R. T., Draetta, G. F. & Chiocca, S. A mechanism for inhibiting the SUMO pathway. Mol. Cell 16, 549–561 (2004)

    CAS  Article  Google Scholar 

  23. 23

    Boggio, R., Passafaro, A. & Chiocca, S. Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation. J. Biol. Chem. 282, 15376–15382 (2007)

    CAS  Article  Google Scholar 

  24. 24

    Dramsi, S. & Cossart, P. Listeriolysin O-mediated calcium influx potentiates entry of Listeria monocytogenes into the human Hep-2 epithelial cell line. Infect. Immun. 71, 3614–3618 (2003)

    CAS  Article  Google Scholar 

  25. 25

    Tang, P., Rosenshine, I., Cossart, P. & Finlay, B. B. Listeriolysin O activates mitogen-activated protein kinase in eucaryotic cells. Infect. Immun. 64, 2359–2361 (1996)

    CAS  Article  Google Scholar 

  26. 26

    Lin, X., Liang, M., Liang, Y. Y., Brunicardi, F. C. & Feng, X. H. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J. Biol. Chem. 278, 31043–31048 (2003)

    CAS  Article  Google Scholar 

  27. 27

    Kang, J. S., Saunier, E. F., Akhurst, R. J. & Derynck, R. The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nature Cell Biol. 10, 654–664 (2008)

    CAS  Article  Google Scholar 

  28. 28

    Fitzpatrick, D. R. & Bielefeldt-Ohmann, H. Transforming growth factor beta in infectious disease: always there for the host and the pathogen. Trends Microbiol. 7, 232–236 (1999)

    CAS  Article  Google Scholar 

  29. 29

    Nakane, A. et al. Transforming growth factor beta is protective in host resistance against Listeria monocytogenes infection in mice. Infect. Immun. 64, 3901–3904 (1996)

    CAS  Article  Google Scholar 

  30. 30

    Glomski, I. J., Gedde, M. M., Tsang, A. W., Swanson, J. A. & Portnoy, D. A. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J. Cell Biol. 156, 1029–1038 (2002)

    CAS  Article  Google Scholar 

  31. 31

    Dramsi, S. et al. Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol. Microbiol. 16, 251–261 (1995)

    CAS  Article  Google Scholar 

  32. 32

    Bischof, O. et al. The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol. Cell 22, 783–794 (2006)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank V. Villiers for technical assistance. Work in the P.C. laboratory received financial support from Institut Pasteur, INSERM, INRA and European Research Council (ERC, Advanced Grant 233348). We further acknowledge support by research grants from the Fund for Scientific Research – Flanders (Belgium) (project number G.0042.07), the Concerted Research Actions (project BOF07/GOA/012) from Ghent University and the Inter University Attraction Poles (IUAP06). D.R. is supported by a fellowship from the Association pour la Recherche sur le Cancer, F.I. is a Research Assistant of the Research Foundation – Flanders (Fonds Wetenschappelijk Onderzoek – Vlaanderen) and P.C. is an international research scholar of the Howard Hughes Medical Institute.

Author Contributions P.C. planned the project. D.R., K.G., J.V., A.D. and P.C. designed the research, D.R., M.H., E.G., M.-A.N., F.I. and H. N.-K. performed the experiments. D.R., M.H., K.G., J.V. and P.C. analysed the experiments. D.R. and P.C. wrote the paper and co-authors commented on it.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pascale Cossart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4 with legends, Supplementary Tables 1-3 and Supplementary References. (PDF 669 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ribet, D., Hamon, M., Gouin, E. et al. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 464, 1192–1195 (2010). https://doi.org/10.1038/nature08963

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing