Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dipolar collisions of polar molecules in the quantum regime

Abstract

Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range and spatially anisotropic. This is in stark contrast to the much studied dilute gases of ultracold atoms, which have isotropic and extremely short-range (or ‘contact’) interactions. Furthermore, the large electric dipole moment of polar molecules can be tuned using an external electric field; this has a range of applications such as the control of ultracold chemical reactions1, the design of a platform for quantum information processing2,3,4 and the realization of novel quantum many-body systems5,6,7,8. Despite intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules9, only recently have sufficiently high densities been achieved10. Here we report the experimental observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a pronounced increase in the loss rate of fermionic potassium–rubidium molecules due to ultracold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood in a relatively simple model based on quantum threshold laws for the scattering of fermionic polar molecules. In addition, we directly observe the spatial anisotropy of the dipolar interaction through measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold gas of polar molecules. Furthermore, the large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive, ‘head-to-tail’, dipolar interactions11,12,13,14.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Two-body inelastic loss for fermionic polar molecules.
Figure 2: A p-wave centrifugal barrier for dipolar collisions between fermionic polar molecules.
Figure 3: Normalized fractional heating rate, / n , as a function of dipole moment.
Figure 4: Apparent cross-dimensional rethermalization in the polar molecule gas.

References

  1. Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008)

    CAS  Article  Google Scholar 

  2. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002)

    ADS  CAS  Article  Google Scholar 

  3. Andre, A. et al. A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nature Phys. 2, 636–642 (2006)

    ADS  CAS  Article  Google Scholar 

  4. Yelin, S. F., Kirby, K. & Côte, R. Schemes for robust quantum computation with polar molecules. Phys. Rev. A 74, 050301 (2006)

    ADS  Article  Google Scholar 

  5. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nature Phys. 2, 341–347 (2006)

    ADS  CAS  Article  Google Scholar 

  6. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009)

    ADS  Article  Google Scholar 

  7. Pupillo, G., Micheli, A., Büchler, H. P. & Zoller, P. in Cold Molecules: Theory, Experiment, Applications (eds Krems, R. V., Stwalley, W. C. & Friedrich, B.) 421–469 (CRC, 2009)

    Google Scholar 

  8. Baranov, M. Theoretical progress in many-body physics with ultracold dipolar gases. Phys. Rep. 464, 71–111 (2008)

    ADS  Article  Google Scholar 

  9. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. . Cold and ultracold molecules: science, technology and applications. N. J. Phys. 11, 055049 (2009)

    Article  Google Scholar 

  10. Ni, K.-K. et al. A high-phase-space-density gas of polar molecules. Science 322, 231–235 (2008)

    ADS  CAS  Article  Google Scholar 

  11. Micheli, A. et al. Cold polar molecules in two-dimensional traps: tailoring interactions with external fields for novel quantum phases. Phys. Rev. A 76, 043604 (2007)

    ADS  Article  Google Scholar 

  12. Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007)

    ADS  Article  Google Scholar 

  13. Li, Z. & Krems, R. V. Inelastic collisions in an ultracold quasi-two-dimensional gas. Phys. Rev. A 79, 050701 (2009)

    ADS  Article  Google Scholar 

  14. Quéméner, G. & Bohn, J. L. Strong dependence of ultracold chemical rates on electric dipole moments. Phys. Rev. A 81, 022702 (2010)

    ADS  Article  Google Scholar 

  15. Stuhler, J. et al. Observation of dipole-dipole interaction in a degenerate quantum gas. Phys. Rev. Lett. 95, 150406 (2005)

    ADS  CAS  Article  Google Scholar 

  16. Vengalattore, M. et al. Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate. Phys. Rev. Lett. 100, 170403 (2008)

    ADS  CAS  Article  Google Scholar 

  17. Gral, K., Santos, L. & Lewenstein, M. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 88, 170406 (2002)

    ADS  Article  Google Scholar 

  18. Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. (in the press); preprint at 〈http://arxiv.org/abs/0906.2009〉 (2009)

  19. Pollet, L., Picon, J. D., Büchler, H. P. & Troyer, M. Supersolid phase with cold polar molecules on a triangular lattice. Preprint at 〈http://arxiv.org/abs/0906.2126〉 (2009)

  20. Cooper, N. R. & Shlyapnikov, G. V. Stable topological superfluid phase of ultracold polar fermionic molecules. Phys. Rev. Lett. 103, 155302 (2009)

    ADS  CAS  Article  Google Scholar 

  21. Ospelkaus, S. et al. Controlling the hyperfine state of rovibronic ground state polar molecules. Phys. Rev. Lett. 104, 030402 (2010)

    ADS  CAS  Article  Google Scholar 

  22. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010)

    ADS  CAS  Article  Google Scholar 

  23. Masuhara, N. et al. Evaporative cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett. 61, 935–938 (1988)

    ADS  CAS  Article  Google Scholar 

  24. Monroe, C. R., Cornell, E. A., Sackett, C. A., Myatt, C. J. & Wieman, C. E. Measurement of Cs-Cs elastic scattering at T = 30 µK. Phys. Rev. Lett. 70, 414–417 (1993)

    ADS  CAS  Article  Google Scholar 

  25. Bohn, J. L., Cavagnero, M. & Ticknor, C. Quasi-universal dipolar scattering in cold and ultracold gases. N. J. Phys. 11, 055039 (2009)

    Article  Google Scholar 

  26. Gorshkov, A. V. et al. Suppression of inelastic collisions between polar molecules with a repulsive shield. Phys. Rev. Lett. 101, 073201 (2008)

    ADS  CAS  Article  Google Scholar 

  27. Wang, D. W., Lukin, M. D. & Demler, E. Quantum fluids of self-assembled chains of polar molecules. Phys. Rev. Lett. 97, 180413 (2006)

    ADS  Article  Google Scholar 

  28. Klawunn, M., Duhme, J. & Santos, L. Bose-Fermi mixtures of self-assembled filaments of fermionic polar molecules. Phys. Rev. A 81, 013604 (2010)

    ADS  Article  Google Scholar 

  29. DeMarco, B., Bohn, J. L., Burke, J. P. Jr, Holland, M. H. & Jin, D. S. Measurement of p-wave threshold law using evaporatively cooled fermionic atoms. Phys. Rev. Lett. 82, 4208–4211 (1999)

    ADS  CAS  Article  Google Scholar 

  30. Kotochigova, S. Dispersion interactions and reactive collisions of ultracold polar molecules. Preprint at 〈http://arxiv.org/abs/1003.2672〉 (2010)

Download references

Acknowledgements

This work was supported by the US National Institute of Standards and Technology programme Innovations in Measurement Science–Ultracold Stable Molecules, the US National Science Foundation (NSF) Physics Frontier Center at JILA, the US Department of Energy, Air Force Office of Scientific Research Multidisciplinary Research Initiative on Ultracold Molecules, and a NSF graduate fellowship (B.N.).

Author information

Authors and Affiliations

Authors

Contributions

The experimental work and data analysis were done by K.-K.N., S.O., D.W., B.N., M.H.G.M., J.Y. and D.S.J. Theoretical calculations of the inelastic loss rates were done by G.Q. and J.L.B.

Corresponding authors

Correspondence to J. Ye or D. S. Jin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Information and Data comprising: Heating due to two-body inelastic p-wave collisions. (PDF 82 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ni, KK., Ospelkaus, S., Wang, D. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010). https://doi.org/10.1038/nature08953

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08953

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing