Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice


Cortical neurons form specific circuits1, but the functional structure of this microarchitecture and its relation to behaviour are poorly understood. Two-photon calcium imaging can monitor activity of spatially defined neuronal ensembles in the mammalian cortex2,3,4,5. Here we applied this technique to the motor cortex of mice performing a choice behaviour. Head-fixed mice were trained to lick in response to one of two odours, and to withhold licking for the other odour6,7. Mice routinely showed significant learning within the first behavioural session and across sessions. Microstimulation8,9 and trans-synaptic tracing10,11 identified two non-overlapping candidate tongue motor cortical areas. Inactivating either area impaired voluntary licking. Imaging in layer 2/3 showed neurons with diverse response types in both areas. Activity in approximately half of the imaged neurons distinguished trial types associated with different actions. Many neurons showed modulation coinciding with or preceding the action, consistent with their involvement in motor control. Neurons with different response types were spatially intermingled. Nearby neurons (within 150 μm) showed pronounced coincident activity. These temporal correlations increased with learning within and across behavioural sessions, specifically for neuron pairs with similar response types. We propose that correlated activity in specific ensembles of functionally related neurons is a signature of learning-related circuit plasticity. Our findings reveal a fine-scale and dynamic organization of the frontal cortex that probably underlies flexible behaviour.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Lick/no-lick task.
Figure 2: Imaging motor cortex ensemble activity.
Figure 3: Task-related activity.
Figure 4: Temporal structure of ensemble activity.
Figure 5: Learning-related coupling of specific neuronal ensembles.


  1. 1

    Song, S., Sjostrom, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, 1–13 (2005)

    Article  Google Scholar 

  2. 2

    Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Kerr, J. N. et al. Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex. J. Neurosci. 27, 13316–13328 (2007)

    CAS  Article  Google Scholar 

  4. 4

    Sato, T. R., Gray, N. W., Mainen, Z. F. & Svoboda, K. The functional microarchitecture of the mouse barrel cortex. PLoS Biol. 5, e189 (2007)

    Article  Google Scholar 

  5. 5

    Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007)

    CAS  Article  Google Scholar 

  6. 6

    Slotnick, B. & Restrepo, D. Olfactometry with mice. Curr. Protoc. Neurosci. Chapter 8, Unit–8.20 (2005)

    PubMed  Google Scholar 

  7. 7

    Verhagen, J. V., Wesson, D. W., Netoff, T. I., White, J. A. & Wachowiak, M. Sniffing controls an adaptive filter of sensory input to the olfactory bulb. Nature Neurosci. 10, 631–639 (2007)

    CAS  Article  Google Scholar 

  8. 8

    Li, C. X. & Waters, R. S. Organization of the mouse motor cortex studied by retrograde tracing and intracortical microstimulation (ICMS) mapping. Can. J. Neurol. Sci. 18, 28–38 (1991)

    CAS  Article  Google Scholar 

  9. 9

    Ayling, O. G., Harrison, T. C., Boyd, J. D., Goroshkov, A. & Murphy, T. H. Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nature Methods 6, 219–224 (2009)

    CAS  Article  Google Scholar 

  10. 10

    Song, C. K., Enquist, L. W. & Bartness, T. J. New developments in tracing neural circuits with herpesviruses. Virus Res. 111, 235–249 (2005)

    CAS  Article  Google Scholar 

  11. 11

    Fay, R. A. & Norgren, R. Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. III. Lingual muscle motor systems. Brain Res. Brain Res. Rev. 25, 291–311 (1997)

    CAS  Article  Google Scholar 

  12. 12

    Tanji, J. & Evarts, E. V. Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J. Neurophysiol. 39, 1062–1068 (1976)

    CAS  Article  Google Scholar 

  13. 13

    Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Travers, J. B., Dinardo, L. A. & Karimnamazi, H. Motor and premotor mechanisms of licking. Neurosci. Biobehav. Rev. 21, 631–647 (1997)

    CAS  Article  Google Scholar 

  15. 15

    Rathelot, J. A. & Strick, P. L. Muscle representation in the macaque motor cortex: an anatomical perspective. Proc. Natl Acad. Sci. USA 103, 8257–8262 (2006)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Brecht, M. et al. Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J. Comp. Neurol. 479, 360–373 (2004)

    Article  Google Scholar 

  17. 17

    Smith, B. N. et al. Pseudorabies virus expressing enhanced green fluorescent protein: A tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. Proc. Natl Acad. Sci. USA 97, 9264–9269 (2000)

    ADS  CAS  Article  Google Scholar 

  18. 18

    O’Connor, D. H. et al. Vibrissa-based object localization in head-fixed mice. J. Neurosci. 30, 1947–1967 (2010)

    Article  Google Scholar 

  19. 19

    Nimmerjahn, A., Kirchhoff, F., Kerr, J. N. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nature Methods 1, 31–37 (2004)

    CAS  Article  Google Scholar 

  20. 20

    Kerr, J. N., Greenberg, D. & Helmchen, F. Imaging input and output of neocortical networks in vivo. Proc. Natl Acad. Sci. USA 102, 14063–14068 (2005)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Doucette, W. & Restrepo, D. Profound context-dependent plasticity of mitral cell responses in olfactory bulb. PLoS Biol. 6, e258 (2008)

    Article  Google Scholar 

  22. 22

    Bair, W., Zohary, E. & Newsome, W. T. Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21, 1676–1697 (2001)

    CAS  Article  Google Scholar 

  23. 23

    Ts’o, D. Y., Gilbert, C. D. & Wiesel, T. N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6, 1160–1170 (1986)

    Article  Google Scholar 

  24. 24

    Georgopoulos, A. P., Taira, M. & Lukashin, A. Cognitive neurophysiology of the motor cortex. Science 260, 47–52 (1993)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Fujisawa, S., Amarasingham, A., Harrison, M. T. & Buzsaki, G. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nature Neurosci. 11, 823–833 (2008)

    CAS  Article  Google Scholar 

  26. 26

    Constantinidis, C., Franowicz, M. N. & Goldman-Rakic, P. S. Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. J. Neurosci. 21, 3646–3655 (2001)

    CAS  Article  Google Scholar 

  27. 27

    Aertsen, A. M. & Gerstein, G. L. Evaluation of neuronal connectivity: sensitivity of cross-correlation. Brain Res. 340, 341–354 (1985)

    CAS  Article  Google Scholar 

  28. 28

    Dombeck, D. A., Graziano, M. S. & Tank, D. W. Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice. J. Neurosci. 29, 13751–13760 (2009)

    CAS  Article  Google Scholar 

  29. 29

    Shepherd, G. M. G., Stepanyants, A., Bureau, I., Chklovskii, D. B. & Svoboda, K. Geometric and functional organization of cortical circuits. Nature Neurosci. 8, 782–790 (2005)

    CAS  Article  Google Scholar 

  30. 30

    Holmgren, C., Harkany, T., Svennenfors, B. & Zilberter, Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. (Lond.) 551, 139–153 (2003)

    CAS  Article  Google Scholar 

  31. 31

    Dobbins, E. G. & Feldman, J. L. Differential innervation of protruder and retractor muscles of the tongue in rat. J. Comp. Neurol. 357, 376–394 (1995)

    CAS  Article  Google Scholar 

  32. 32

    Arenkiel, B. R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007)

    CAS  Article  Google Scholar 

  33. 33

    Hira, R. et al. Transcranial optogenetic stimulation for functional mapping of the motor cortex. J. Neurosci. Methods 179, 258–263 (2009)

    Article  Google Scholar 

  34. 34

    Bodyak, N. & Slotnick, B. Performance of mice in an automated olfactometer: odor detection, discrimination and odor memory. Chem. Senses 24, 637–645 (1999)

    CAS  Article  Google Scholar 

  35. 35

    Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998)

    ADS  Article  Google Scholar 

  36. 36

    Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Clements, J. D. & Bekkers, J. M. Detection of spontaneous synaptic events with an optimally scaled template. Biophys. J. 73, 220–229 (1997)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Yaksi, E., Judkewitz, B. & Friedrich, R. W. Topological reorganization of odor representations in the olfactory bulb. PLoS Biol. 5, e178 (2007)

    Article  Google Scholar 

Download references


We thank D. Rinberg for help with experiments; F. Collman, D. Tank, C. Zuker, T. O’Connor and V. Iyer for help with analysis and imaging software; L. W. Enquist for pseudorabies vectors; W. Denk for help with mechanical design; D. Dombeck, M. Andermann, A. Kerlin and C. Reid for discussions about imaging awake mice; B. Shields, A. Hu and S. Michael for help with histology; A. Arnold for help with imaging; J. Osborne and S. Bassin for machining; L. Luo, Z. Mainen and D. Rinberg for comments on the manuscript; A. C. Gontang for illustration. Supported by Howard Hughes Medical Institute. T.K. is a Helen Hay Whitney Foundation postdoctoral fellow.

Author Contributions T.K. and K.S. conceived the project. T.K. developed and performed most of the experiments. D.H.O. helped to develop head-fixed behaviour. D.H. developed the glass-plug imaging window. Y.-X.Z. and D.H. performed optical stimulation mapping. T.K. and T.R.S. performed electrical stimulation mapping. T.K., B.M.H. and T.R.S. performed PRV tracing. T.K., T.R.S. and K.S. analysed data. M.G. provided a software module for image segmentation. T.K. and K.S. wrote the paper.

Author information



Corresponding author

Correspondence to Takaki Komiyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-17 with legends. (PDF 2614 kb)

Supplementary Movie 1

This movie shows normal voluntary licking of mice with muscimol injections in the somatosensory cortex. (MOV 658 kb)

Supplementary Movie 2

This movie shows normal voluntary licking of mice with muscimol injections in the anterior-medial cortex. (MOV 1446 kb)

Supplementary Movie 3

This movie shows defects in voluntary licking of mice with muscimol injections in alM. (MOV 1364 kb)

Supplementary Movie 4

This movie shows defects in voluntary licking of mice with muscimol injections in pmM. (MOV 2315 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Komiyama, T., Sato, T., O’Connor, D. et al. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464, 1182–1186 (2010). https://doi.org/10.1038/nature08897

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing