Transcriptional control of preadipocyte determination by Zfp423


The worldwide epidemic of obesity has increased the urgency to develop a deeper understanding of physiological systems related to energy balance and energy storage, including the mechanisms controlling the development of fat cells (adipocytes). The differentiation of committed preadipocytes to adipocytes is controlled by PPARγ and several other transcription factors1, but the molecular basis for preadipocyte determination is not understood. Using a new method for the quantitative analysis of transcriptional components, we identified the zinc-finger protein Zfp423 as a factor enriched in preadipose versus non-preadipose fibroblasts. Ectopic expression of Zfp423 in non-adipogenic NIH 3T3 fibroblasts robustly activates expression of Pparg in undifferentiated cells and permits cells to undergo adipocyte differentiation under permissive conditions. Short hairpin RNA (shRNA)-mediated reduction of Zfp423 expression in 3T3-L1 cells blunts preadipocyte Pparg expression and diminishes the ability of these cells to differentiate. Furthermore, both brown and white adipocyte differentiation is markedly impaired in Zfp423-deficient mouse embryos. Zfp423 regulates Pparg expression, in part, through amplification of the BMP signalling pathway, an effect dependent on the SMAD-binding capacity of Zfp423. This study identifies Zfp423 as a transcriptional regulator of preadipocyte determination.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The C2H2 zinc-finger protein Zfp423 is enriched in preadipocytes.
Figure 2: Zfp423 regulates preadipocyte Pparg gene expression and adipocyte differentiation in vitro.
Figure 3: Zfp423 amplifies the pro-adipogenic actions of BMP proteins through its SMAD protein interaction domain.
Figure 4: Impaired brown and white adipocyte differentiation in Zfp423 -deficient embryos.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Complete microarray data is available at Gene Expression Omnibus under accession GSE19732 (


  1. 1

    Farmer, S. R. Transcriptional control of adipocyte formation. Cell Metab. 4, 263–273 (2006)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Green, H. & Kehinde, O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5, 19–27 (1975)

    CAS  Article  Google Scholar 

  3. 3

    Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo . Cell 135, 240–249 (2008)

    CAS  Article  Google Scholar 

  4. 4

    Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Green, H. & Kehinde, O. Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell 7, 105–113 (1976)

    CAS  Article  Google Scholar 

  6. 6

    Todaro, G. J. & Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17, 299–313 (1963)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Gray, P. A. et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306, 2255–2257 (2004)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Barak, Y. et al. PPARγ is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585–595 (1999)

    CAS  Article  Google Scholar 

  9. 9

    Kubota, N. et al. PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell 4, 597–609 (1999)

    CAS  Article  Google Scholar 

  10. 10

    Rosen, E. D. et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro . Mol. Cell 4, 611–617 (1999)

    CAS  Article  Google Scholar 

  11. 11

    Tsai, R. Y. & Reed, R. R. Cloning and functional characterization of Roaz, a zinc finger protein that interacts with O/E-1 to regulate gene expression: implications for olfactory neuronal development. J. Neurosci. 17, 4159–4169 (1997)

    CAS  Article  Google Scholar 

  12. 12

    Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature 460, 1154–1158 (2009)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Cheng, L. E., Zhang, J. & Reed, R. R. The transcription factor Zfp423/OAZ is required for cerebellar development and CNS midline patterning. Dev. Biol. 307, 43–52 (2007)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Bowers, R. R., Kim, J. W., Otto, T. C. & Lane, M. D. Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc. Natl Acad. Sci. USA 103, 13022–13027 (2006)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Hata, K. et al. Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor γ during bone morphogenetic protein 2-induced adipogenesis. Mol. Biol. Cell 14, 545–555 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Jin, W. et al. Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev. Cell 10, 461–471 (2006)

    CAS  Article  Google Scholar 

  18. 18

    Tang, Q. Q., Otto, T. C. & Lane, M. D. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl Acad. Sci. USA 101, 9607–9611 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Hata, A. et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100, 229–240 (2000)

    CAS  Article  Google Scholar 

  21. 21

    Warming, S., Rachel, R. A., Jenkins, N. A. & Copeland, N. G. Zfp423 is required for normal cerebellar development. Mol. Cell. Biol. 26, 6913–6922 (2006)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Alcaraz, W. A. et al. Zfp423 controls proliferation and differentiation of neural precursors in cerebellar vermis formation. Proc. Natl Acad. Sci. USA 103, 19424–19429 (2006)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Cheng, L. E. & Reed, R. R. Zfp423/OAZ participates in a developmental switch during olfactory neurogenesis. Neuron 54, 547–557 (2007)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Jimenez, M. A., Akerblad, P., Sigvardsson, M. & Rosen, E. D. Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. Mol. Cell. Biol. 27, 743–757 (2007)

    CAS  Article  Google Scholar 

  25. 25

    Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996)

    CAS  Article  Google Scholar 

  26. 26

    Li, C. & Wong, W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci. USA 98, 31–36 (2001)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


We are grateful to S. Kleiner and S. Kajimura for critical reading of the manuscript and to all members of the Spiegelman laboratory for useful discussions. We thank B. Wagner for technical assistance in using robotic liquid handlers, B. Seed’s laboratory for help with high-through query of Primer bank, and J. Brestelli for performing high-throughput queries of the Primer 3 program. We are also grateful to D. Bernlohr for the FABP4 antiserum. R.K.G. is supported by the Ruth Kirstein NRSA (F32 DK079507-01), Z.A. is supported by K08 HL79172-01 (NHLBI) and the Smith Family Foundation Grant, P.S. is supported by NIH DK081605, and the research described in this study was supported by NIH DK31405 to B.M.S. and by NIDCD R01DC008295 to R.R.R.

Author Contributions R.K.G. and B.M.S. conceived and designed the experiments. R.K.G., Z.A., P.S., R.J.M., L.Y. and H.M.C. performed experiments. All authors analysed the data. Y.A.R., H.K. and R.R.R. provided reagents and samples, and R.K.G. and B.M.S. wrote the manuscript.

Author information



Corresponding author

Correspondence to Bruce M. Spiegelman.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-14 with legends, and Supplementary Tables 1-2. (PDF 1177 kb)

Supplementary Data

Supplementary Data Set 1: Raw Cycle Threshold data from Quanttrx assays (XLS 479 kb)

Supplementary Data

Supplementary Data Set 2: Primer sequences used in the Quanttrx Assays (XLS 522 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, R., Arany, Z., Seale, P. et al. Transcriptional control of preadipocyte determination by Zfp423. Nature 464, 619–623 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing