Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment

A Corrigendum to this article was published on 03 November 2010

Abstract

Biota can be described in terms of elemental composition, expressed as an atomic ratio of carbon:nitrogen:phosphorus (refs 1–3). The elemental stoichiometry of microoorganisms is fundamental for understanding the production dynamics and biogeochemical cycles of ecosystems because microbial biomass is the trophic base of detrital food webs4,5,6. Here we show that heterotrophic microbial communities of diverse composition from terrestrial soils and freshwater sediments share a common functional stoichiometry in relation to organic nutrient acquisition. The activities of four enzymes that catalyse the hydrolysis of assimilable products from the principal environmental sources of C, N and P show similar scaling relationships over several orders of magnitude, with a mean ratio for C:N:P activities near 1:1:1 in all habitats. We suggest that these ecoenzymatic ratios reflect the equilibria between the elemental composition of microbial biomass and detrital organic matter and the efficiencies of microbial nutrient assimilation and growth. Because ecoenzymatic activities intersect the stoichiometric and metabolic theories of ecology7,8,9, they provide a functional measure of the threshold at which control of community metabolism shifts from nutrient to energy flow.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organic nitrogen (N) acquisition activity and organic phosphorus (P) acquisition activity in relation to carbon (C) acquisition.
Figure 2: Frequency distribution of ecoenzymatic ratios.

References

  1. Redfield, A. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958)

    CAS  Google Scholar 

  2. Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11006 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Cleveland, C. C. & Liptzin, D. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85, 235–252 (2006)

    Article  Google Scholar 

  4. Elser, J. J. et al. Nutritional constraints in terrestrial and freshwater foodwebs. Nature 408, 578–580 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton Univ. Press, 2002)

    Google Scholar 

  6. Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684–686 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Gillooly, J. F. et al. The metabolic basis of whole-organism RNA and phosphorus content. Proc. Natl Acad. Sci. USA 102, 11923–11927 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Kerkoff, A. J., Enquist, B. J., Elser, J. J. & Fagan, W. F. Plant allometry, stoichiometry and temperature-dependence of primary productivity. Glob. Ecol. Biogeogr. 14, 585–598 (2005)

    Article  Google Scholar 

  9. Allen, A. P. & Gillooly, J. F. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol. Lett. 12, 369–384 (2009)

    Article  Google Scholar 

  10. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004)

    Article  Google Scholar 

  11. Houghton, R. A. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35, 313–347 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Cole, J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–184 (2007)

    Article  CAS  Google Scholar 

  13. Chróst, R. J. Microbial Enzymes in Aquatic Environments (Springer, 1991)

    Book  Google Scholar 

  14. Burns, R. G. & Dick, R. P. Enzymes in the Environment: Activity, Ecology and Applications (Dekker, 2002)

    Book  Google Scholar 

  15. Allison, S. D., Gartner, T., Holland, K., Weintraub, M. & Sinsabaugh, R. L. in Manual of Environmental Microbiology (eds Hurst, C. J., Knudsen, G. R., McInerney, M. J., Stetzenbach, L. D. & Walter, M. V.) 704–711 (ASM Press, 2007)

    Google Scholar 

  16. Schimel, J. P. & Weintraub, M. N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem. 35, 549–563 (2003)

    Article  CAS  Google Scholar 

  17. Moorhead, D. L. & Sinsabaugh, R. L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76, 151–174 (2006)

    Article  Google Scholar 

  18. Cross, W. F., Benstead, J. P., Frost, P. C. & Thomas, S. A. Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwat. Biol. 50, 1895–1912 (2005)

    Article  CAS  Google Scholar 

  19. Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008)

    Article  Google Scholar 

  20. Sinsabaugh, R. L. & Follstad Shah, J. J. Integrating resource utilization and temperature in metabolic scaling of riverine bacterial production. Ecol. Monogr. (in the press)

  21. Olander, L. P. & Vitousek, P. M. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49, 175–190 (2000)

    Article  CAS  Google Scholar 

  22. Sinsabaugh, R. L., Carreiro, M. M. & Repert, D. A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60, 1–24 (2002)

    Article  CAS  Google Scholar 

  23. Sinsabaugh, R. L., Gallo, M. E., Lauber, C., Waldrop, M. & Zak, D. R. Extracellular enzyme activities and soil carbon dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75, 201–215 (2005)

    Article  CAS  Google Scholar 

  24. Frost, P. C. et al. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecol. Lett. 9, 774–779 (2006)

    Article  Google Scholar 

  25. Herron, P. M., Stark, J. M., Holt, C., Hooker, T. & Cardon, Z. G. Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas. Soil Biol. Biochem. 41, 1262–1269 (2009)

    Article  CAS  Google Scholar 

  26. Sand-Jensen, K., Pedersen, N. L. & Sondergaard, M. Bacterial metabolism in small temperate streams under contemporary and future climates. Freshwat. Biol. 52, 2340–2353 (2007)

    Article  Google Scholar 

  27. Parton, W. et al. Global-scale similarities in nitrogen release patterns during long term decomposition. Science 315, 361–362 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Hill, B. H. et al. Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands. Freshwat. Biol. 51, 1670–1683 (2006)

    Article  CAS  Google Scholar 

  29. Hill, B. H., Elonen, C. M., Jicha, T. M., Bolgrien, D. W. & Moffett, M. F. Sediment microbial enzyme activity as an indicator of nutrient limitation in the great rivers of the Upper Mississippi River basin. Biogeochemistry 10.1007/s10533-009-9366-0 (2009)

  30. Warton, D. I., Wright, J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. Camb. Phil. Soc. 81, 259–291 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

J.J.F.S. was supported by the National Science Foundation (DBI-0630558).

Author Contributions R.L.S. provided data from soils. B.H.H. provided data from freshwater sediments. J.J.F.S. and R.L.S. collaborated on data synthesis and interpretation. All authors contributed to manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Sinsabaugh.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Methods, Supplementary Data, Supplementary Tables S1-S2, Supplementary Figures S1 and Supplementary References. (PDF 1463 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinsabaugh, R., Hill, B. & Follstad Shah, J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009). https://doi.org/10.1038/nature08632

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08632

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing