Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Information causality as a physical principle

Abstract

Quantum physics has remarkable distinguishing characteristics. For example, it gives only probabilistic predictions (non-determinism) and does not allow copying of unknown states (no-cloning1). Quantum correlations may be stronger than any classical ones2, but information cannot be transmitted faster than light (no-signalling). However, these features do not uniquely define quantum physics. A broad class of theories exist that share such traits and allow even stronger (than quantum) correlations3. Here we introduce the principle of ‘information causality’ and show that it is respected by classical and quantum physics but violated by all no-signalling theories with stronger than (the strongest) quantum correlations. The principle relates to the amount of information that an observer (Bob) can gain about a data set belonging to another observer (Alice), the contents of which are completely unknown to him. Using all his local resources (which may be correlated with her resources) and allowing classical communication from her, the amount of information that Bob can recover is bounded by the information volume (m) of the communication. Namely, if Alice communicates m bits to Bob, the total information obtainable by Bob cannot be greater than m. For m = 0, information causality reduces to the standard no-signalling principle. However, no-signalling theories with maximally strong correlations would allow Bob access to all the data in any m-bit subset of the whole data set held by Alice. If only one bit is sent by Alice (m = 1), this is tantamount to Bob’s being able to access the value of any single bit of Alice’s data (but not all of them). Information causality may therefore help to distinguish physical theories from non-physical ones. We suggest that information causality—a generalization of the no-signalling condition—might be one of the foundational properties of nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The task.
Figure 2: Van Dam’s protocol17.
Figure 3: Information causality identifies the strongest quantum correlations.

Similar content being viewed by others

References

  1. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  CAS  Google Scholar 

  2. Bell, J. S. On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  3. Popescu, S. & Rohrlich, D. Quantum nonlocality as an axiom. Found. Phys. 24, 379–385 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C. H. & Brassard, G. in Proceedings IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India 175–179 (IEEE, 1984)

    Google Scholar 

  5. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Masanes, L., Acín, A. & Gisin, N. General properties of nonsignaling theories. Phys. Rev. A 73, 012112 (2006)

    Article  ADS  Google Scholar 

  8. Barnum, H., Barrett, J., Leifer, M. & Wilce, A. Generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501 (2007)

    Article  ADS  Google Scholar 

  9. Scarani, V. et al. Secrecy extraction from no-signaling correlations. Phys. Rev. A 74, 042339 (2006)

    Article  ADS  Google Scholar 

  10. Barrett, J., Hardy, L. & Kent, A. No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    Article  ADS  Google Scholar 

  11. Acín, A., Gisin, N. & Masanes, L. From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  12. Masanes, L. Universally-composable privacy amplification from causality constraints. Phys. Rev. Lett. 102, 140501 (2009)

    Article  ADS  Google Scholar 

  13. Żukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  Google Scholar 

  14. Short, A. J., Popescu, S. & Gisin, N. Entanglement swapping for generalized nonlocal correlations. Phys. Rev. A 73, 012101 (2006)

    Article  ADS  Google Scholar 

  15. Barnum, H., Barrett, J., Leifer, M. & Wilce, A. Teleportation in general probabilistic theories. Preprint at 〈http://arxiv.org/abs/0805.3553v1〉 (2008)

  16. Skrzypczyk, P., Brunner, N. & Popescu, S. Emergence of quantum correlations from nonlocality swapping. Phys. Rev. Lett. 102, 110402 (2009)

    Article  ADS  Google Scholar 

  17. Van Dam, W. Nonlocality and Communication Complexity. PhD thesis, Univ. Oxford (2000); Implausible consequences of superstrong nonlocality. Preprint at 〈http://arxiv.org/abs/quant-ph/0501159v1〉 (2005)

    Google Scholar 

  18. Brassard, G. et al. Limit on nonlocality in any world in which communication complexity is not trivial. Phys. Rev. Lett. 96, 250401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Linden, N., Popescu, S., Short, A. J. & Winter, A. Quantum nonlocality and beyond: limits from nonlocal computation. Phys. Rev. Lett. 99, 180502 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Brunner, N. & Skrzypczyk, P. Non-locality distillation and post-quantum theories with trivial communication complexity. Phys. Rev. Lett. 102, 160403 (2009)

    Article  ADS  Google Scholar 

  21. Barrett, J. Information processing in generalized probabilistic theories. Phys. Rev. A 75, 032304 (2007)

    Article  ADS  Google Scholar 

  22. Bennett, C. H. & Wiesner, S. J. Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  CAS  Google Scholar 

  23. Ambainis, A., Nayak, A., Ta-Shma, A. & Vazirani, U. Quantum dense coding and quantum finite automata. J. ACM 49, 496–511 (2002)

    Article  MathSciNet  Google Scholar 

  24. Ver Steeg, G. & Wehner, S. Relaxed uncertainty relations and information processing. Preprint at 〈http://arxiv.org/abs/0811.3771v2〉 (2009)

  25. Wolf, S. & Wullschleger, J. Oblivious transfer and quantum non-locality. Preprint at 〈http://arxiv.org/abs/quant-ph/0502030v1〉 (2005)

  26. Brassard, G. Quantum communication complexity. Found. Phys. 33, 1593–1616 (2003)

    Article  MathSciNet  Google Scholar 

  27. Cerf, N. J. & Adami, C. Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194–5197 (1997)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  29. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  30. Cirel’son, B. S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank M. Christandl, V. Vedral and S. Wehner for stimulating discussions. This work was supported by the National Research Foundation and the Ministry of Education in Singapore, and by the European Commission through the Integrated Project Qubit Applications. A.W. acknowledges support by the UK Engineering and Physical Sciences Research Council through the Quantum Information Processing Interdisciplinary Research Collaboration and an Advanced Fellowship, by a Royal Society Wolfson Merit Award, and by a Philip Leverhulme Prize.

Author Contributions All authors contributed to the initial conception of the ideas, to the working out of details, and to the writing and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Pawłowski.

Supplementary information

Supplementary Information

This file contains Supplementary Data and Supplementary References. (PDF 161 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawłowski, M., Paterek, T., Kaszlikowski, D. et al. Information causality as a physical principle. Nature 461, 1101–1104 (2009). https://doi.org/10.1038/nature08400

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08400

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing