Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A role for Lin28 in primordial germ-cell development and germ-cell malignancy

Abstract

The rarity and inaccessibility of the earliest primordial germ cells (PGCs) in the mouse embryo thwart efforts to investigate molecular mechanisms of germ-cell specification. stella (also called Dppa3) marks the rare founder population of the germ lineage1,2. Here we differentiate mouse embryonic stem cells carrying a stella transgenic reporter into putative PGCs in vitro. The Stella+ cells possess a transcriptional profile similar to embryo-derived PGCs, and like their counterparts in vivo, lose imprints in a time-dependent manner. Using inhibitory RNAs to screen candidate genes for effects on the development of Stella+ cells in vitro, we discovered that Lin28, a negative regulator of let-7 microRNA processing3,4,5,6, is essential for proper PGC development. Furthermore, we show that Blimp1 (also called Prdm1), a let-7 target and a master regulator of PGC specification7,8,9, can rescue the effect of Lin28 deficiency during PGC development, thereby establishing a mechanism of action for Lin28 during PGC specification. Overexpression of Lin28 promotes formation of Stella+ cells in vitro and PGCs in chimaeric embryos, and is associated with human germ-cell tumours. The differentiation of putative PGCs from embryonic stem cells in vitro recapitulates the early stages of gamete development in vivo, and provides an accessible system for discovering novel genes involved in germ-cell development and malignancy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ES cell differentiation into putative PGCs in vitro is marked by stella expression.
Figure 2: Lin28 regulates PGC development.
Figure 3: Lin28 and Blimp1 regulate PGC development in vivo.
Figure 4: LIN28 expression in human germ-cell tumours.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The microarray data have been deposited in the Gene Expression Omnibus (GEO) and given the series accession number GSE7948.

References

  1. Payer, B. et al. Stella is a maternal effect gene required for normal early development in mice. Curr. Biol. 13, 2110–2117 (2003)

    Article  CAS  Google Scholar 

  2. Payer, B. et al. Generation of stella-GFP transgenic mice: a novel tool to study germ cell development. Genesis 44, 75–83 (2006)

    Article  CAS  Google Scholar 

  3. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 32, 276–284 (2008)

    Article  CAS  Google Scholar 

  4. Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008)

    Article  CAS  Google Scholar 

  5. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol. 10, 987–993 (2008)

    Article  CAS  Google Scholar 

  6. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Nie, K. et al. MicroRNA-mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: a potential pathogenetic lesion in Hodgkin lymphomas. Am. J. Pathol. 173, 242–252 (2008)

    Article  CAS  Google Scholar 

  8. Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Vincent, S. D. et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315–1325 (2005)

    Article  CAS  Google Scholar 

  10. Kurimoto, K. et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev. 22, 1617–1635 (2008)

    Article  CAS  Google Scholar 

  11. Saitou, M. Specification of the germ cell lineage in mice. Front. Biosci. 14, 1068–1087 (2009)

    Article  CAS  Google Scholar 

  12. Yamaji, M. et al. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nature Genet. 40, 1016–1022 (2008)

    Article  CAS  Google Scholar 

  13. Geijsen, N. et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427, 148–154 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Hayashi, K., Lopes, S. M., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008)

    Article  CAS  Google Scholar 

  15. Wei, W. et al. Primordial germ cell specification from embryonic stem cells. PLoS ONE 3, e4013 (2008)

    Article  ADS  Google Scholar 

  16. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet. 2, 21–32 (2001)

    Article  CAS  Google Scholar 

  17. Donovan, P. J. & de Miguel, M. P. Turning germ cells into stem cells. Curr. Opin. Genet. Dev. 13, 463–471 (2003)

    Article  CAS  Google Scholar 

  18. Piskounova, E. et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283, 21310–21314 (2008)

    Article  CAS  Google Scholar 

  19. Chang, T. C. et al. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc. Natl Acad. Sci. USA 106, 3384–3389 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Dangi-Garimella, S. et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 28, 347–358 (2009)

    Article  CAS  Google Scholar 

  21. Viswanathan, S. R. et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genet. advance online publication 10.1038/ng.392 (31 May 2009)

  22. Gidekel, S., Pizov, G., Bergman, Y. & Pikarsky, E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4, 361–370 (2003)

    Article  CAS  Google Scholar 

  23. Korkola, J. E. et al. Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res. 66, 820–827 (2006)

    Article  CAS  Google Scholar 

  24. Cheng, L. Establishing a germ cell origin for metastatic tumors using OCT4 immunohistochemistry. Cancer 101, 2006–2010 (2004)

    Article  Google Scholar 

  25. Hayashi, K. et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS ONE 3, e1738 (2008)

    Article  ADS  Google Scholar 

  26. Ancelin, K. et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nature Cell Biol. 8, 623–630 (2006)

    Article  CAS  Google Scholar 

  27. Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005)

    Article  ADS  CAS  Google Scholar 

  28. Shivdasani, R. A., Mayer, E. L. & Orkin, S. H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432–434 (1995)

    Article  ADS  CAS  Google Scholar 

  29. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Keller, G. M. In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869 (1995)

    Article  CAS  Google Scholar 

  31. Kyba, M., Perlingeiro, R. C. & Daley, G. Q. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109, 29–37 (2002)

    Article  CAS  Google Scholar 

  32. West, J. A., Park, I. H., Daley, G. Q. & Geijsen, N. In vitro generation of germ cells from murine embryonic stem cells. Nature Protocols 1, 2026–2036 (2006)

    Article  CAS  Google Scholar 

  33. Beard, C., Hochedlinger, K., Plath, K., Wutz, A. & Jaenisch, R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44, 23–28 (2006)

    Article  CAS  Google Scholar 

  34. Koshimizu, U., Watanabe, M. & Nakatsuji, N. Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro . Dev. Biol. 168, 683–685 (1995)

    Article  CAS  Google Scholar 

  35. Ginsburg, M., Snow, M. H. & McLaren, A. Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521–528 (1990)

    CAS  PubMed  Google Scholar 

  36. Stoger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71 (1993)

    Article  CAS  Google Scholar 

  37. Yoon, B. J. et al. Regulation of DNA methylation of Rasgrf1 . Nature Genet. 30, 92–96 (2002)

    Article  CAS  Google Scholar 

  38. Mager, J., Montgomery, N. D., de Villena, F. P. & Magnuson, T. Genome imprinting regulated by the mouse Polycomb group protein Eed. Nature Genet. 33, 502–507 (2003)

    Article  CAS  Google Scholar 

  39. Lucifero, D., Mertineit, C., Clarke, H. J., Bestor, T. H. & Trasler, J. M. Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79, 530–538 (2002)

    Article  CAS  Google Scholar 

  40. Zaehres, H. & Daley, G. Q. Transgene expression and RNA interference in embryonic stem cells. Methods Enzymol. 420, 49–64 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. W. Lensch for comments on this manuscript; D. K. Gifford, G. Gerber, C. Reeder and J. Baughman for comments and input regarding microarray analysis; G. Losyev for flow cytometry expertise; and S. Winkler of the British Consulate for providing support for collaboration between the Daley and Surani laboratories. This study was supported by grants from the NIH, the NIH Director’s Pioneer Award of the NIH Roadmap for Medical Research, and by support from the germ cell program of the Harvard Stem Cell Institute. G.Q.D. is a recipient of the Burroughs Wellcome Fund Clinical Scientist Award in Translational Research.

Author Contributions J.A.W., project planning, experimental work, manuscript preparation; S.R.V., A.Y., A.T., K.C., I.-H.P., J.E.S., H.Z., A.P.-A., A.L.F., experimental work; M.A.S., contributed reagents and critical feedback; G.Q.D., project planning, data analysis and manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Q. Daley.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-14 with Legends, Supplementary Tables 1-2 and Supplementary References. (PDF 1365 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, J., Viswanathan, S., Yabuuchi, A. et al. A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature 460, 909–913 (2009). https://doi.org/10.1038/nature08210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08210

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing