Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for an early prokaryotic endosymbiosis

Abstract

Endosymbioses have dramatically altered eukaryotic life, but are thought to have negligibly affected prokaryotic evolution. Here, by analysing the flows of protein families, I present evidence that the double-membrane, Gram-negative prokaryotes were formed as the result of a symbiosis between an ancient actinobacterium and an ancient clostridium. The resulting taxon has been extraordinarily successful, and has profoundly altered the evolution of life by providing endosymbionts necessary for the emergence of eukaryotes and by generating Earth’s oxygen atmosphere. Their double-membrane architecture and the observed genome flows into them suggest a common evolutionary mechanism for their origin: an endosymbiosis between a clostridium and actinobacterium.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic diagrams illustrating prokaryotic symbionts.
Figure 2: An illustration of three steps required for the identification of an endosymbiont from gene flow data, and the tree of life that best fits the gene flow data.
Figure 3: A schematic diagram illustrating the prokaryotic ring of life.

References

  1. 1

    Margulis, L. Origin of the Eukaryotic Cells (Yale Univ. Press, 1970)

    Google Scholar 

  2. 2

    Margulis, L. Symbiosis in Cell Evolution (Freeman and Company, 1981)

    Google Scholar 

  3. 3

    Lake, J. A. & Rivera, M. C. Was the nucleus the first endosymbiont? Proc. Natl Acad. Sci. USA 91, 2880–2881 (1994)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Martin, W. & Muller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Lang, B. F. & Gray, M. W. Mitochondrial genome evolution and the origin of eukaryotes. Annu. Rev. Genet. 33, 351–397 (1999)

    CAS  Article  Google Scholar 

  6. 6

    Poole, A., Jeffares, D. & Penny, D. Early evolution: prokaryotes, the new kids on the block. Bioessays 21, 880–889 (1999)

    CAS  Article  Google Scholar 

  7. 7

    Keeling, P. J. & Palmer, J. D. Horizontal gene transfer in eukaryotic evolution. Nature Rev. Genet. 9, 605–614 (2008)

    CAS  Article  Google Scholar 

  8. 8

    Archibald, J. M. & Keeling, P. J. Recycled plastids: a 'green movement' in eukaryotic evolution. Trends Genet. 18, 577–584 (2002)

    CAS  Article  Google Scholar 

  9. 9

    Syvanen, M. & Kado, C. I. Horizontal Gene Transfer (Chapman and Hall, 1998)

    Google Scholar 

  10. 10

    Jain, R., Rivera, M. C., Moore, J. E. & Lake, J. A. Horizontal gene transfer in microbial genome evolution. Theor. Popul. Biol. 61, 489–495 (2002)

    Article  Google Scholar 

  11. 11

    Bowler, C., Karl, D. M. & Colwell, R. R. Microbial oceanography in a sea of opportunity. Nature 459, 180–184 (2009)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009)

    CAS  ADS  Article  Google Scholar 

  13. 13

    DeLong, E. F. The microbial ocean from genomes to biomes. Nature 459, 200–206 (2009)

    CAS  ADS  Article  Google Scholar 

  14. 14

    von Dohlen, C. D., Kohler, S., Alsop, S. T. & McManus, W. R. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412, 433–436 (2001)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Froestl, J. & Overmann, J. Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch. Microbiol. 174, 50–58 (2000)

    Article  Google Scholar 

  16. 16

    Wanner, G., Vogl, K. & Overmann, J. Ultrastructural characterization of the prokaryotic symbiosis in “Chlorochromatium aggregatum”. J. Bacteriol. 190, 3721–3730 (2008)

    CAS  Article  Google Scholar 

  17. 17

    Hilario, E. & Gogarten, J. P. Horizontal transfer of ATPase genes—the tree of life becomes a net of life. Biosystems 31, 111–119 (1993)

    CAS  Article  Google Scholar 

  18. 18

    Dagan, T. & Martin, W. The tree of one percent. Genome Biol. 7, 1181–1187 (2006)

    Article  Google Scholar 

  19. 19

    Jain, R., Rivera, M. C., Moore, J. E. & Lake, J. A. Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol. 20, 1598–1602 (2003)

    CAS  Article  Google Scholar 

  20. 20

    Rivera, M. C. & Lake, J. A. The ring of life: evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005)

    CAS  Article  Google Scholar 

  22. 22

    Sorek, R. et al. Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318, 1449–1452 (2007)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Doolittle, W. F. Phylogenetic classification and the universal tree. Science 284, 2124–2128 (1999)

    CAS  Article  Google Scholar 

  24. 24

    McInerney, J. O. & Pisani, D. Paradigm for life. Science 318, 1390–1391 (2007)

    CAS  Article  Google Scholar 

  25. 25

    Martin, W. & Embley, T. M. Early evolution comes full circle. Nature 431, 134–136 (2004)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Ohno, M. et al. Symbiobacterium thermophilum gen. nov., sp. nov., a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth. Int. J. Syst. Evol. Microbiol. 50, 1829–1832 (2000)

    CAS  Article  Google Scholar 

  27. 27

    Garrity, G. & Holt, J. G. in Bergey's Manual of Systematic Bacteriology (eds Boone, D. & Castenholz, R. W.) 119–141 (Springer, 2001)

    Book  Google Scholar 

  28. 28

    Wu, M. et al. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet. 1, 563–574 (2005)

    CAS  Article  Google Scholar 

  29. 29

    Lake, J. A., Servin, J. A., Herbold, C. W. & Skophammer, R. G. Evidence for a new root of the tree of life. Syst. Biol. 57, 835–843 (2008)

    CAS  Article  Google Scholar 

  30. 30

    Skophammer, R. G., Herbold, C. W., Rivera, M., Servin, J. A. & Lake, J. A. Evidence that the root of the tree of life is not within the Archaea. Mol. Biol. Evol. 23, 1648–1651 (2006)

    CAS  Article  Google Scholar 

  31. 31

    Lake, J. A., Herbold, C. W., Rivera, M. C., Servin, J. A. & Skophammer, R. G. Rooting the tree of life using non-ubiquitous genes. Mol. Biol. Evol. 24, 130–136 (2007)

    CAS  Article  Google Scholar 

  32. 32

    Skophammer, R. G., Servin, J. A., Herbold, C. W. & Lake, J. A. Evidence for a Gram positive, eubacterial root of the tree of life. Mol. Biol. Evol. 24, 1761–1768 (2007)

    CAS  Article  Google Scholar 

  33. 33

    Ueda, K. et al. Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism. Nucleic Acids Res. 32, 4937–4944 (2004)

    CAS  Article  Google Scholar 

  34. 34

    Boone, D. & Castenholz, R. W. Bergey’s Manual of Systematic Bacteriology 2nd edn Vol. 1, The Archaea and the Deep Branching and Phototrophic Bacteria (ed. Garrity, G. M.) (Springer, 2001)

    Book  Google Scholar 

  35. 35

    Wilkinson, M., McInerney, J. O., Hirt, R. P., Foster, P. G. & Embley, T. M. Of clades and clans: terms for phylogenetic relationships in unrooted trees. Trends Ecol. Evol. 22, 114–115 (2007)

    Article  Google Scholar 

  36. 36

    Stanier, R. Y., Adelberg, E. A. & Ingraham, J. L. The Microbial World (Prentice-Hall, 1976)

    Google Scholar 

  37. 37

    Gupta, R. S. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1435–1491 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Lake, J. A. Reconstructing evolutionary graphs: 3D parsimony. Mol. Biol. Evol. 25, 1677–1682 (2008)

    CAS  Article  Google Scholar 

  39. 39

    Lake, J. A. & Rivera, M. C. Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol. Biol. Evol. 21, 681–690 (2004)

    CAS  Article  Google Scholar 

  40. 40

    Lake, J. A. Calculating the probability of multitaxon evolutionary trees—bootstrappers gambit. Proc. Natl Acad. Sci. USA 92, 9662–9666 (1995)

    CAS  ADS  Article  Google Scholar 

  41. 41

    Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96, 3801–3806 (1999)

    CAS  ADS  Article  Google Scholar 

  42. 42

    Gest, H. & Favinger, J. L. Heliobacterium chlorum gen. nov. sp. nov., an anoxygenic brownish-green photosynthetic bacterium containing a new form of bacteriochlorophyll. Arch. Microbiol. 136, 11–16 (1983)

    CAS  Article  Google Scholar 

  43. 43

    Raymond, J., Zhaxybayeva, O., Gogarten, J. P., Gerdes, S. Y. & Blankenship, R. E. Whole-genome analysis of photosynthetic prokaryotes. Science 298, 1616–1620 (2002)

    CAS  ADS  Article  Google Scholar 

  44. 44

    Boone, D. R., Castenholz, R. W., Johnson, R. L. & Liu, Y. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55, 1735–1741 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Overmann, J. & Schubert, K. Phototropic consortia: model systems for symbiotic interrelations between prokaryotes. Arch. Microbiol. 177, 201–208 (2002)

    CAS  Article  Google Scholar 

  46. 46

    Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004)

    CAS  ADS  Article  Google Scholar 

  47. 47

    Margulis, L. in Genomes in Flux (eds Gogarten, M. Olendzenski, L. & Gogarten, J. P.) (Humana, in the press)

  48. 48

    Fischer, W. W. Life before the rise of oxygen. Nature 455, 1051–1052 (2008)

    CAS  ADS  Article  Google Scholar 

  49. 49

    Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008)

    CAS  ADS  Article  Google Scholar 

  50. 50

    Ventura, G. T. et al. Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere. Proc. Natl Acad. Sci. USA 104, 14260–14265 (2007)

    CAS  ADS  Article  Google Scholar 

  51. 51

    Servin, J. A., Herbold, C. W., Skophammer, R. G. & Lake, J. A. Evidence excluding the root of the tree of life from the Actinobacteria. Mol. Biol. Evol. 25, 1–4 (2008)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

I thank C. Herbold, R. Skophammer, A. Norman and J. Servin for advice and help. This work was supported by grants from the NSF and the UCLA NASA Astrobiology Institute to J.A.L.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James A. Lake.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Tables S1 and S2A-S2J and Supplementary References. (PDF 482 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lake, J. Evidence for an early prokaryotic endosymbiosis. Nature 460, 967–971 (2009). https://doi.org/10.1038/nature08183

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing