Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere

Abstract

The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate1,2,3,4,5. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension6, the plateau experienced 2 km of rock uplift7 without significant internal deformation2,3,4. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere8,9,10 over 35–40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America11,12 is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3–6 km Myr-1 and is consistent with lower seismic velocities13 and more negative Bouguer gravity14 at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Data (metres) used to derive the modelled residual rock uplift function.
Figure 2: Cenozoic magmatic patterns in the western United States, showing magmatic encroachment onto the Colorado Plateau.
Figure 3: Thermal and isostatic evolution during re-equilibration following a thermal perturbation at the base of a variable-thickness plate.

Similar content being viewed by others

References

  1. Hunt, C. B. Cenozoic geology of the Colorado Plateau. Prof. Pap. US Geol. Surv. 279, (1956)

  2. Bird, P. Continental delamination and the Colorado Plateau. J. Geophys. Res. 84, 7561–7571 (1979)

    ADS  Google Scholar 

  3. Morgan, P. & Swanberg, C. A. On the Cenozoic uplift and tectonic stability of the Colorado Plateau. J. Geodyn. 3, 39–63 (1985)

    Google Scholar 

  4. Spencer, J. E. Uplift of the Colorado Plateau due to lithospheric attenuation during Laramide low-angle subduction. J. Geophys. Res. 101, 13595–13609 (1996)

    ADS  Google Scholar 

  5. McQuarrie, N. & Chase, C. G. Raising the Colorado Plateau. Geology 28, 91–94 (2000)

    ADS  Google Scholar 

  6. Wernicke, B., Christiansen, R. L., England, P. C. & Sonder, L. J. Tectonomagmatic evolution of Cenozoic extension in the North American Cordillera. Spec. Publ. Geol. Soc. (Lond.) 28, 203–221 (1987)

    ADS  Google Scholar 

  7. Pederson, J. L., Mackley, R. D. & Eddleman, J. L. Colorado Plateau uplift and erosion evaluated using GIS. GSA Today 12, 4–10 (2002)

    Google Scholar 

  8. Alibert, C. Peridotite xenoliths from the western Grand Canyon and the Thumb: a probe into the subcontinental mantle of the Colorado Plateau. J. Geophys. Res. 99, 21605–21620 (1990)

    ADS  Google Scholar 

  9. Smith, D. Insights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisons. J. Geophys. Res. 105, 16769–16781 (2000)

    ADS  CAS  Google Scholar 

  10. Lee, C.-T. et al. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States. Nature 411, 69–73 (2001)

    ADS  CAS  PubMed  Google Scholar 

  11. Humphreys, E. D. Post-Laramide removal of the Farallon slab, western United States. Geology 23, 987–990 (1995)

    ADS  Google Scholar 

  12. Humphreys, E. D. et al. How Laramide-age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United States. Int. Geol. Rev. 45, 575–595 (2003)

    Google Scholar 

  13. Sine, C. R. et al. Mantle structure beneath the western edge of the Colorado Plateau. Geophys. Res. Lett. 35 10.1029/2008GL033391 (2008)

  14. Roy, M., MacCarthy, J. K. & Selverstone, J. Upper mantle structure beneath the eastern Colorado Plateau and Rio Grande rift revealed by Bouguer gravity, seismic velocities, and xenolith data. Geochem. Geophys. Geosyst. 6 10.1029/2005GC001008 (2005)

  15. Menzies, M., Xu, Y., Zhang, H. & Fan, W. Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96, 1–21 (2007)

    ADS  CAS  Google Scholar 

  16. McMillan, M. E., Heller, P. L. & Wing, S. L. History and causes of post-Laramide relief in the Rocky Mountain orogenic plateau. Bull. Geol. Soc. Am. 118, 393–405 (2006)

    Google Scholar 

  17. Flowers, R., Wernicke, B. P. & Farley, K. A. Unroofing, incision and uplift history of the southwestern Colorado Plateau from (U-Th)/He apatite thermochronometry. Bull. Geol. Soc. Am. 120, 571–587 (2008)

    CAS  Google Scholar 

  18. Moucha, R. et al. Mantle convection and the recent evolution of the Colorado Plateau and the Rio Grande Rift valley. Geology 36, 439–442 (2008)

    ADS  Google Scholar 

  19. Lowry, A. & Smith, R. B. Flexural rigidity of the Basin and Range-Colorado Plateau-Rocky Mountain transition from coherence analysis of gravity and topography. J. Geophys. Res. 99, 20123–20140 (1994)

    ADS  Google Scholar 

  20. Lipman, P. W. & Glazner, A. F. Introduction to middle Tertiary Cordilleran volcanism – Magma sources and relations to regional tectonics. J. Geophys. Res. 96, 13193–13199 (1991)

    ADS  Google Scholar 

  21. Wang, K., Plank, T., Walker, J. D. & Smith, E. I. A melting profile across the Basin and Range, SW USA. J. Geophys. Res. 107 10.1029/2001JB000209 (2002)

  22. Kelly, R. K., Kelemen, P. B. & Jull, M. Buoyancy of the continental upper mantle. Geochem. Geophys. Geosyst. 4 10.1029/2002GC000399 (2003)

  23. Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res. 111 10.1029/2003JB002950 (2006)

  24. Lenardic, A., Moresi, L.-N. & Mülhaus, H. Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res. 108 10.1029/2002JB001859 (2003)

  25. Wenrich, K. J. et al. Spatial migration and compositional changes of Miocene-Quaternary magmatism in the western Grand Canyon. J. Geophys. Res. 100, 10417–10440 (1995)

    ADS  CAS  Google Scholar 

  26. Smith, D. & Griffin, W. L. Garnetite xenoliths and mantle-water interactions below the Colorado Plateau, southwestern United States. J. Petrol. 46, 1901–1924 (2005)

    ADS  CAS  Google Scholar 

  27. English, J. M., Johnston, S. T. & Wang, K. L. Thermal modeling of the Laramide orogeny: testing the flat-slab subduction hypothesis. Earth Planet. Sci. Lett. 214, 619–632 (2003)

    ADS  CAS  Google Scholar 

  28. Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parametrization of hydrous melting. Geochem. Geophys. Geosyst. 4 10.1029/2002GC000433 (2003)

  29. Goes, S. & van der Lee, S. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J. Geophys. Res. 107 10.1029/2000JB000049 (2002)

  30. Jones, C. H., Unruh, J. R. & Sonder, L. J. The role of gravitational potential energy in active deformation in the southwestern United States. Nature 381, 37–41 (1996)

    ADS  CAS  Google Scholar 

  31. Peterson, C. & Roy, M. in Geology of the Chama Basin (eds Brister, B. S., Bauer, P. W. & Read, A. S) 105–114 (56th Field Conf. Guidebook, New Mexico Geological Society, 2005)

    Google Scholar 

  32. Berman, S. C., Foland, K. A. & Spera, F. J. On the origin of an amphibole-rich vein in a peridotite inclusions from the Lunar Crater Volcanic Field, Nevada, U.S.A. Earth Planet. Sci. Lett. 56, 343–361 (1981)

    ADS  Google Scholar 

  33. Condie, K. C., Cox, J., O’Reilly, S. Y., Griffin, W. L. & Kerrich, R. Distribution of high field strength and rare earth elements in mantle and lower crustal xenoliths from the Southwestern United States: the role of grain-boundary phases. Geochim. Cosmochim. Acta 68, 3919–3942 (2004)

    ADS  CAS  Google Scholar 

  34. Ehrenberg, S. N. Petrogenesis of garnet lherzolite and megacrystalline nodules from the Thumb, Navajo Volcanic Field. J. Petrol. 23, 507–547 (1982)

    ADS  CAS  Google Scholar 

  35. Feigenson, M. D. Continental alkali basalts of kimberlite and depleted mantle: evidence from Kilbourne Hole maar, New Mexico. Geophys. Res. Lett. 13, 965–968 (1986)

    ADS  CAS  Google Scholar 

  36. Lauglin, A. W. & Brookins, D. G. Chemical and strontium isotopic investigations of ultramafic inclusions and basalt, Bandera Crater, New Mexico. Geochim. Cosmochim. Acta 35, 107–113 (1971)

    ADS  Google Scholar 

  37. McGuire, A. V. & Mukasa, S. B. Magmatic modification of the uppermost mantle beneath the Basin and Range to Colorado Plateau Transition Zone; evidence from xenoliths, Wikieup, Arizona. Contrib. Mineral. Petrol. 128, 52–65 (1997)

    ADS  CAS  Google Scholar 

  38. Roden, M. F., Irving, A. J. & Murthy, V. R. Isotopic and trace element composition of the upper mantle beneath a young continental rift: results from Kilbourne Hole, New Mexico. Geochim. Cosmochim. Acta 52, 461–473 (1988)

    ADS  CAS  Google Scholar 

  39. Smith, D. & Riter, J. C. A. Genesis and evolution of low-Al orthopyroxene in spinel peridotite xenoliths, Grand Canyon field, Arizona, USA. Contrib. Mineral. Petrol. 127, 391–404 (1997)

    ADS  CAS  Google Scholar 

  40. Wilshire, H. G. et al. Mafic and ultramafic xenoliths from volcanic rocks of the western United States. Prof. Pap. US Geol. Surv. 1443, (1988)

  41. Baldridge, W. S. Mafic and ultramafic inclusion suites from the Rio Grande rift (New Mexico) and their bearing on the composition and thermal state of the lithosphere. J. Volcanol. Geotherm. Res. 6, 319–351 (1979)

    ADS  CAS  Google Scholar 

  42. Beard, B. L. & Glazner, A. F. Trace element and Sr and Nd isotopic composition of mantle xenoliths from the Big Pine volcanic field, California. J. Geophys. Res. 100, 4169–4181 (1985)

    ADS  Google Scholar 

  43. Bussod, G. Y. A. Thermal and Kinematic History of Mantle Xenoliths from Kilbourne Hole, New Mexico. Report No. LA-9616-T (Los Alamos National Laboratory, 1983)

    Google Scholar 

  44. Evans, S. H. & Nash, W. P. Petrogenesis of xenolith-bearing basalts from southeastern Arizona. Am. Mineral. 64, 249–267 (1979)

    CAS  Google Scholar 

  45. Fodor, R. V. Ultramafic and mafic inclusions and megacrysts in Pliocene basalt, Black Range, New Mexico. Bull. Geol. Soc. Am. 89, 451–459 (1978)

    CAS  Google Scholar 

  46. Frey, F. A. & Prinz, M. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet. Sci. Lett. 38, 129–176 (1978)

    ADS  CAS  Google Scholar 

  47. Galer, S. J. G. & O’Nions, R. K. Chemical and isotopic studies of ultramafic inclusions from the San Carlos Volcanic Field, Arizona: a bearing on their petrogenesis. J. Petrol. 30, 1033–1064 (1989)

    ADS  CAS  Google Scholar 

  48. Hervig, R. L., Smith, J. V. & Dawson, J. B. Lherzolite xenoliths in kimberlites and basalts: petrogenetic and crystallochemical significance of some minor and trace elements in olivine, pyroxenes, garnet and spinel. Trans. R. Soc. Edinb. Earth Sci. 77, 181–202 (1986)

    CAS  Google Scholar 

  49. Johnson, K. E. An Appraisal of Mantle Metasomatism based upon Oxidation States, Trace Element and Isotope Geochemistry, and Fluid/Rock Ratios in Spinel Lherzolite Xenoliths. PhD thesis, Northwestern Univ. (1990)

    Google Scholar 

  50. Riter, J. C. A. Geochemical and Tectonic Evolution of the Colorado Plateau Mantle Lithosphere: Evidence from Grand Canyon Mantle Xenoliths. PhD thesis, Univ. Texas, Austin (1999)

    Google Scholar 

  51. Rosenbaum, J. M., Zindler, A. & Rubenstone, J. L. Mantle fluids: evidence from fluid inclusions. Geochim. Cosmochim. Acta 60, 3229–3252 (1996)

    ADS  CAS  Google Scholar 

  52. Smith, D. & Riter, J. C. A. Genesis and evolution of low-Al orthopyroxene in spinel peridotite xenoliths, Grand Canyon field, Arizona, USA. Contrib. Mineral. Petrol. 127, 391–404 (1997)

    ADS  CAS  Google Scholar 

  53. Smith, D. & Levy, S. Petrology of Green Knobs diatreme, New Mexico, and implications for the mantle below the Colorado Plateau. Earth Planet. Sci. Lett. 19, 107–125 (1976)

    ADS  Google Scholar 

  54. Roden, M. F. & Shimizu, N. Ion microprobe analyses bearing on the composition of the upper mantle beneath the Basin and Range and Colorado Plateau provinces. J. Geophys. Res. 98, 14091–14108 (1993)

    ADS  CAS  Google Scholar 

  55. Tyner, G. N. & Smith, D. Peridotite xenoliths in silica-rich, potassic latite from the transition zone of the Colorado Plateau in north-central Arizona. Contrib. Mineral. Petrol. 94, 63–71 (1986)

    ADS  CAS  Google Scholar 

  56. Wilshire, H. G., McGuire, A. V., Noller, J. S. & Turrin, B. D. Petrology of lower crustal and upper mantle xenoliths from the Cima Volcanic Field, California. J. Petrol. 32, 169–200 (1991)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation (NSF) grants EAR0538022 and EAR0408513 and an NSF Advance Fellowship from the Lamont-Doherty Earth Observatory to M.R. The authors thank C. Jones for comments that significantly improved the model and manuscript and C. Callahan for compiling a database of xenolith compositions. The ideas in this paper benefited from our discussions with M. Hirschmann, L. Farmer, J. Selverstone and K. Condie.

Author Contributions M.R. was responsible for all of the data analysis and model calculations, T.H.J. provided ideas on the implications of the chemical heterogeneity of the Colorado Plateau and J.P. provided estimates and interpretation of field-based rock uplift and erosion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousumi Roy.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-3 with Legends. (PDF 930 kb)

Supplementary Data

This spreadsheet contains all data used in analysis for Figure 1 and Figures 4-6. (XLS 35 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, M., Jordan, T. & Pederson, J. Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere. Nature 459, 978–982 (2009). https://doi.org/10.1038/nature08052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08052

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing