Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The nature of selection during plant domestication

Abstract

Plant domestication is an outstanding example of plant–animal co-evolution and is a far richer model for studying evolution than is generally appreciated. There have been numerous studies to identify genes associated with domestication, and archaeological work has provided a clear understanding of the dynamics of human cultivation practices during the Neolithic period. Together, these have provided a better understanding of the selective pressures that accompany crop domestication, and they demonstrate that a synthesis from the twin vantage points of genetics and archaeology can expand our understanding of the nature of evolutionary selection that accompanies domestication.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Centres of plant domestication.
Figure 2: Evolution of grain-size increases in the archaeological record.
Figure 3: The evolution of non-shattering seeds in the archaeological record.
Figure 4: Frequency of non-shattering, domesticated, forms of barley, wheat and rice in the archaeological record.
Figure 5: Examples of selective sweeps at the maize gene tb1 and at the rice locus waxy.

References

  1. Hancock, J. F. Contributions of domesticated plant studies to our understanding of plant evolution. Ann. Bot. (Lond.) 96, 953–963 (2005).

    CAS  Google Scholar 

  2. Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 418, 700–707 (2002).

    ADS  CAS  PubMed  Google Scholar 

  3. Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).

    Google Scholar 

  4. Darwin, C. The Variation of Animals and Plants under Domestication (John Murray, 1868).

    Google Scholar 

  5. Darwin, C. & Wallace, A. R. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J. Proc. Linn. Soc. (Zool.) 3, 46–50 (1858).

    Google Scholar 

  6. Rindos, D. The Origins of Agriculture: An Evolutionary Perspective (Academic, 1984).

    Google Scholar 

  7. Zeder, M. A., Emshwiller, E., Smith, B. D. & Bradley, D. G. Documenting domestication: the intersection of genetics and archaeology. Trends Genet. 22, 139–155 (2006).

    CAS  PubMed  Google Scholar 

  8. Schultz, T. R. & Brady, S. G. Major evolutionary transitions in ant agriculture. Proc. Natl Acad. Sci. USA 105, 5435–5440 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Farrell, B. D. et al. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55, 2011–2027 (2001).

    CAS  PubMed  Google Scholar 

  10. Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. Cell 127, 1309–1329 (2006).

    CAS  PubMed  Google Scholar 

  11. Burke, J. M., Burger, J. C. & Chapman, M. A. Crop evolution: from genetics to genomics. Curr. Opin. Genet. Dev. 17, 525–532 (2007).

    CAS  PubMed  Google Scholar 

  12. Kislev, M. E., Nadel, D. & Carmi, I. Epipalaeolithic cereal and fruit diet at Ohalu II, Sea of Galilee, Israel. Rev. Palaeobot. Palyn. 73, 161–166 (1992).

    Google Scholar 

  13. Fuller, D. Q. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. (Lond.) 100, 903–924 (2007). This paper synthesizes and compares quantitative data for morphological change across time from archaeologically dated subfossil crop remains.

    Google Scholar 

  14. Harris, D. R. in Foraging and Farming: The Evolution of Plant Exploitation (eds Harris, D. R. & Hillman, G. C.) 11–26 (Routledge, 1989).

    Google Scholar 

  15. Hammer, K. Das Domestikationssyndrom. Kulturpflanze 32, 11–34 (1984).

    Google Scholar 

  16. Smith, B. D. in Documenting Domestication (eds Zeder, M. A., Bradely, D. G., Emshwiller, E. & Smith, B. D.) 15–24 (Univ. California Press, 2006).

    Google Scholar 

  17. Harlan, J. R., De Wet, J. M. J. & Price, E. G. Comparative evolution of cereals. Evolution 27, 311–325 (1973).

    PubMed  Google Scholar 

  18. Zohary, D. & Hopf, M. Domestication of Plants in the Old World (Oxford Univ. Press, 2000).

    Google Scholar 

  19. Baskin, C. & Baskin, J. M. Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination (Academic, 2001).

    Google Scholar 

  20. Westoby, M., Leishman, M. & Lord, J. Comparative ecology of seed size and dispersal. Phil. Trans. R. Soc. Lond. B 351, 1309–1317 (1996).

    ADS  Google Scholar 

  21. Hillman, G. C. in Village on the Euphrates: From Foraging to Farming at Abu Hureyra (eds Moore, A. M. T., Hillman, G. C. & Legge, A. J.) 327–398 (Oxford Univ. Press, 2000).

    Google Scholar 

  22. Hillman, G. C., Hedges, R., Moore, A. M. T., Colledge, S. & Pettitt, P. New evidence of Late Glacial cereal cultivation at Abu Hureyra on the Euphrates. Holocene 11, 383–393 (2001).

    ADS  Google Scholar 

  23. Fuller, D. Q. et al. Presumed domestication? Evidence for wild rice cultivation and domestication in the fifth millennium bc of the Lower Yangtze region. Antiquity 81, 316–331 (2007).

    Google Scholar 

  24. Zhao, Z. The Middle Yangtze region in China is one place where rice was domesticated: phytolith evidence from the Diaotonghuan Cave, Northern Jaingxi. Antiquity 72, 885–897 (1998).

    Google Scholar 

  25. Crawford, G. Paleoethnobotany of the Kameda Peninsula Jomon (Museum of Anthropology, Univ. Michigan, 1983).

    Google Scholar 

  26. Li, C. B., Zhou, A. L. & Sang, T. Rice domestication by reducing shattering. Science 311, 1936–1939 (2006). This paper reports the first molecular isolation of a loss-of-shattering gene in a cereal crop species, a trait that is the hallmark of domestication in seed crops.

    ADS  CAS  PubMed  Google Scholar 

  27. Wilke, P. J., Bettinger, R., King, T. F. & O'Connell, J. F. Harvest selection and domestication in seed plants. Antiquity 46, 203–209 (1972).

    Google Scholar 

  28. Hillman, G. & Davies, M. S. Domestication rates in wild wheats and barley under primitive cultivation. Biol. J. Linn. Soc. 39, 39–78 (1990).

    Google Scholar 

  29. Konishi, S. et al. An SNP caused loss of seed shattering during rice domestication. Science 312, 1392–1396 (2006).

    ADS  CAS  PubMed  Google Scholar 

  30. Simons, K. J. et al. Molecular characterization of the major wheat domestication gene Q . Genetics 172, 547–555 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, L., Lee, G.-A., Jiang, L. & Zhang, J. Evidence for the early beginning (c. 9000 cal. bp) of rice domestication in China: a response. Holocene 17, 1059–1068 (2007)

    ADS  Google Scholar 

  32. Fuller, D. Q. & Harvey, E. L. The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Environ. Archaeol. 11, 219–246 (2006).

    Google Scholar 

  33. D'Andrea, A. C., Kahlheber, S., Logan, A. L. & Watson, D. J. Early domesticated cowpea (Vigna unguiculata) from Central Ghana. Antiquity 81, 686–698 (2007).

    Google Scholar 

  34. D'Ennequin, M. L. T., Toupance, B., Robert, T., Godelle, B. & Gouton, P. H. Plant domestication: a model for studying the selection of linkage. J. Evol. Biol. 12, 1138–1147 (1999).

    Google Scholar 

  35. Tanno, K. I. & Willcox, G. How fast was wild wheat domesticated? Science 311, 1886 (2006).

    CAS  PubMed  Google Scholar 

  36. Zheng, Y., Sun, G. & Chen, X. Characteristics of the short rachillae of rice from archaeological sites dating to 7000 years ago. Chin. Sci. Bull. 52, 1654–1660 (2007).

    Google Scholar 

  37. Willcox, G., Fornite, S. & Herveux, L. Early Holocene cultivation before domestication in northern Syria. Veg. Hist. Archaeobot. 17, 313–325 (2008). This paper reports assemblages of morphologically wild cereals and early weed assemblages from two sites that indicate that wheat and barley were cultivated for more than 1,000 years before morphological domestication.

    Google Scholar 

  38. Wright, S. et al. The effects of artificial selection of the maize genome. Science 308, 1310–1314 (2005). This paper reports a genome-wide screen for genes that display a signature of positive selection associated with crop domestication and diversification.

    CAS  PubMed  Google Scholar 

  39. Caicedo, A. L. et al. Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet. 3, 1289–1299 (2007).

    Google Scholar 

  40. Eyre-Walker, A., Gaut, R. L., Hilton, H., Feldman, D. L. & Gaut, B. S. Investigation of the bottleneck leading to the domestication of maize. Proc. Natl Acad. Sci. USA 95, 4441–4446 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iltis, H. Homeotic sexual translocations and the origin of maize (Zea mays, Poaceae): a new look at an old problem. Econ. Bot. 54, 7–42 (2000)

    Google Scholar 

  42. Wang, H. et al. The origin of the naked grains of maize. Nature 436, 714–719 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dorweiler, J., Stec, A., Kermicle, J. & Doeble, J. Teosinte-glume-architecture — a genetic locus controlling a key step in maize evolution. Science 262, 233–235 (1993).

    ADS  CAS  PubMed  Google Scholar 

  44. Harlan, J. R. & Stemler, A. B. in The Origins of African Plant Domestication (eds Harlan, J. R., De Wet, J. M. J. & Stemler, A. B.) 465–478 (Mounton, 1976).

    Google Scholar 

  45. DeWet, J. M. Systematics and evolution of sorghum. Am. J. Bot. 65, 477–484 (1978).

    Google Scholar 

  46. Giles, R. & Brown, T. GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor. Appl. Genet. 112, 1563–1572 (2006).

    CAS  PubMed  Google Scholar 

  47. Gu, Y. Q. et al. Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics 174, 1493–1504 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Colledge, S. & Conolly, J. (eds) The Origins and Spread of Domestic Plants in Southwest Asia and Europe (Left Coast, 2006).

    Google Scholar 

  49. Kilian, B. et al. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol. Biol. Evol. 24, 217–227 (2007).

    CAS  PubMed  Google Scholar 

  50. Skoglund, P. Diet, cooking and cosmology: interpreting the evidence of Bronze Age plant macrofossils. Curr. Swed. Archaeol. 7, 149–160 (1999).

    Google Scholar 

  51. Anderson, E. A. & Williams, L. Maize and sorghum as a mixed crop in Honduras. Ann. Mo. Bot. Gard. 41, 213–221 (1954).

    Google Scholar 

  52. Bradbury, L. M. T., Henry, R. J., Jin, Q., Reinke, R. F. & Waters, D. L. E. A perfect marker for fragrance genotyping in rice. Mol. Breed. 16, 279–283 (2005).

    CAS  Google Scholar 

  53. Sakamoto, S. in Redefining Nature: Ecology, Culture and Domestication (eds Ellen, R. & Fujui, K.) 215–231 (Berg, 1996).

    Google Scholar 

  54. Yoshida, S. in Vegeculture in Eastern Asia and Oceania (eds Yoshida, S. & Matthews, P.) 31–44 (Japan Center for Area Studies, National Museum of Ethnology, Osaka, 2002).

    Google Scholar 

  55. Hirano, H. Y., Eiguchi, M. & Sano, Y. A single base change altered the regulation of the waxy gene at the posttranscriptional level during the domestication of rice. Mol. Biol. Evol. 15, 978–987 (1998).

    CAS  PubMed  Google Scholar 

  56. Olsen, K. M. & Purugganan, M. D. Molecular evidence on the origin and evolution of glutinous rice. Genetics 162, 941–950 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Olsen, K. M. et al. Selection under domestication: evidence for a sweep in the rice waxy genomic region. Genetics 173, 975–983 (2006). This paper reports the characterization of a selective sweep in the waxy gene, which underlies the origin and spread of sticky rice.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fukunaga, K., Kawase, M. & Kato, K. Structural variation in the waxy gene and differentiation in foxtail millet (Setaria italica (L.) P. Beauv.): implications for multiple origins of the waxy phenotype. Mol. Genet. Genomics 268, 214–222 (2002).

    CAS  PubMed  Google Scholar 

  59. Fuller, D. Agricultural origins and frontiers in South Asia: a working synthesis. J. World Prehist. 20, 1–86 (2006).

    Google Scholar 

  60. Bogaard, A. Neolithic Farming in Central Europe: An Archaeobotanical Study of Crop Husbandry Practices C5500–2200 bc (Routledge, 2004).

    Google Scholar 

  61. Kreuz, A., Marinova, E., Schafer, E. & Wiethold, J. A comparison of Early Neolithic crop and weed assemblages from the Linearbankeramik and the Bulgarian Neolithic culture: differences and similarities. Veg. Hist. Archaeobot. 14, 237–258 (2005).

    Google Scholar 

  62. Colledge, S., Conolly, J. & Shennan, S. The evolution of Neolithic farming from SW Asian origins to NW European limits. Eur. J. Archaeol. 8, 137–156 (2005). This paper provides a quantitative analysis of crop assemblages and shows the role of selection and drift in the creation of a suitable crop package for new environments.

    Google Scholar 

  63. Paterson, A. H. What has QTL mapping taught us about plant domestication? New Phytol. 154, 591–608 (2002).

    CAS  PubMed  Google Scholar 

  64. Willis, D. M. & Burke, J. Quantitative trait locus analysis of the early domestication of sunflower. Genetics 176, 2589–2599 (2007).

    Google Scholar 

  65. Li, W. & Gill, B. S. Multiple genetic pathways for seed shattering in the grasses. Funct. Integr. Genomics 6, 300–309 (2006).

    CAS  PubMed  Google Scholar 

  66. Cai, H. W. & Morishima, H. QTL clusters reflect character associations in wild and cultivated rice. Theor. Appl. Genet. 104, 1217–1228 (2003).

    Google Scholar 

  67. Peng, J. et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc. Natl Acad. Sci. USA 100, 2489–2494 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fan. C. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171 (2006).

  69. Prethepha, P. The fragrance (fgr) gene in natural populations of wild rice (Oryza rufipogon Griff.). Genet. Resour. Crop Evol. 56, 13–18 (2009).

    Google Scholar 

  70. Wang, R. L., Stec, A., Hey, J., Lukens, L. & Doebley, J. The limits of selection during maize domestication. Nature 398, 236–239 (1999). This paper describes the cloning of the maize tb1 gene, the first domestication gene cloned in a cereal crop, and discusses a selective sweep at the promoter region.

    ADS  CAS  PubMed  Google Scholar 

  71. Maynard-Smith, J. & Haigh, J. The hitchhiking effect of a favorable gene. Genet. Res. 23, 23–35 (1974).

    Google Scholar 

  72. Clark, R. M., Linton, E., Messing, J. & Doebley, J. F. Pattern of diversity in the genomic region near the maize domestication gene tb1 . Proc. Natl Acad. Sci. USA 101, 700–707 (2004).

    ADS  CAS  PubMed  Google Scholar 

  73. Palaisa, K., Morgante, M., Tingey, S. & Rafalski, A. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc. Natl Acad. Sci. USA 101, 9885–9890 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sweeney, M. T. et al. Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genet. 3, 1418–1424 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Olsen and S. Colledge for critical reading of the manuscript. Work in the Purugganan laboratory is funded in part by a grant from the National Science Foundation Plant Genome Research Program.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to M.D.P. (mp132@nyu.edu).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Purugganan, M., Fuller, D. The nature of selection during plant domestication. Nature 457, 843–848 (2009). https://doi.org/10.1038/nature07895

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07895

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing