Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality

Abstract

Pyrrolysine (Pyl), the 22nd natural amino acid, is genetically encoded by UAG and inserted into proteins by the unique suppressor tRNAPyl (ref. 1). The Methanosarcinaceae produce Pyl and express Pyl-containing methyltransferases that allow growth on methylamines2. Homologous methyltransferases and the Pyl biosynthetic and coding machinery are also found in two bacterial species1,3. Pyl coding is maintained by pyrrolysyl-tRNA synthetase (PylRS), which catalyses the formation of Pyl-tRNAPyl (refs 4, 5). Pyl is not a recent addition to the genetic code. PylRS was already present in the last universal common ancestor6; it then persisted in organisms that utilize methylamines as energy sources. Recent protein engineering efforts added non-canonical amino acids to the genetic code7,8. This technology relies on the directed evolution of an ‘orthogonal’ tRNA synthetase–tRNA pair in which an engineered aminoacyl-tRNA synthetase (aaRS) specifically and exclusively acylates the orthogonal tRNA with a non-canonical amino acid. For Pyl the natural evolutionary process developed such a system some 3 billion years ago. When transformed into Escherichia coli, Methanosarcina barkeri PylRS and tRNAPyl function as an orthogonal pair in vivo5,9. Here we show that Desulfitobacterium hafniense PylRS–tRNAPyl is an orthogonal pair in vitro and in vivo, and present the crystal structure of this orthogonal pair. The ancient emergence of PylRS–tRNAPyl allowed the evolution of unique structural features in both the protein and the tRNA. These structural elements manifest an intricate, specialized aaRS–tRNA interaction surface that is highly distinct from those observed in any other known aaRS–tRNA complex; it is this general property that underlies the molecular basis of orthogonality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Overall structures.
Figure 2: Structural alignment of tRNA synthetase–tRNA complexes.
Figure 3: DhPylRS–tRNA Pyl interface.
Figure 4: Comparison of PylRS structures.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors have been deposited in the Protein Data Bank under accession codes 2zni (DhPylRS–tRNAPyl complex) and 2znj (DhPylRS apo).

References

  1. 1

    Srinivasan, G., James, C. M. & Krzycki, J. A. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296, 1459–1462 (2002)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Krzycki, J. A. The direct genetic encoding of pyrrolysine. Curr. Opin. Microbiol. 8, 706–712 (2005)

    CAS  Article  Google Scholar 

  3. 3

    Zhang, Y. & Gladyshev, V. N. High content of proteins containing 21st and 22nd amino acids, selenocysteine and pyrrolysine, in a symbiotic deltaproteobacterium of gutless worm Olavius algarvensis . Nucleic Acids Res. 35, 4952–4963 (2007)

    CAS  Article  Google Scholar 

  4. 4

    Polycarpo, C. et al. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc. Natl Acad. Sci. USA 101, 12450–12454 (2004)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Blight, S. K. et al. Direct charging of tRNACUA with pyrrolysine in vitro and in vivo . Nature 431, 333–335 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Kavran, J. M. et al. Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. Proc. Natl Acad. Sci. USA 104, 11268–11273 (2007)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Wang, L., Xie, J. & Schultz, P. G. Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 35, 225–249 (2006)

    Article  Google Scholar 

  8. 8

    Neumann, H., Peak-Chew, S. Y. & Chin, J. W. Genetically encoding Nε-acetyllysine in recombinant proteins. Nature Chem. Biol. 4, 232–234 (2008)

    CAS  Article  Google Scholar 

  9. 9

    Herring, S. et al. The amino-terminal domain of pyrrolysyl-tRNA synthetase is dispensable in vitro but required for in vivo activity. FEBS Lett. 581, 3197–3203 (2007)

    CAS  Article  Google Scholar 

  10. 10

    Yanagisawa, T. et al. Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase. J. Mol. Biol. 378, 634–652 (2008)

    CAS  Article  Google Scholar 

  11. 11

    Polycarpo, C. R. et al. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase. FEBS Lett. 580, 6695–6700 (2006)

    CAS  Article  Google Scholar 

  12. 12

    Yanofsky, C. & Horn, V. Tryptophan synthetase chain positions affected by mutations near the ends of the genetic map of trpA of Escherichia coli . J. Biol. Chem. 247, 4494–4498 (1972)

    CAS  PubMed  Google Scholar 

  13. 13

    Murgola, E. J. tRNA, suppression, and the code. Annu. Rev. Genet. 19, 57–80 (1985)

    CAS  Article  Google Scholar 

  14. 14

    O’Donoghue, P. & Luthey-Schulten, Z. On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol. Mol. Biol. Rev. 67, 550–573 (2003)

    Article  Google Scholar 

  15. 15

    Vasil’eva, I. A. & Moor, N. A. Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition. Biochemistry (Mosc.) 72, 247–263 (2007)

    Article  Google Scholar 

  16. 16

    Ruff, M. et al. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp . Science 252, 1682–1689 (1991)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Goldgur, Y. et al. The crystal structure of phenylalanyl-tRNA synthetase from Thermus thermophilus complexed with cognate tRNAPhe . Structure 5, 59–68 (1997)

    CAS  Article  Google Scholar 

  18. 18

    Cavarelli, J. et al. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J. 13, 327–337 (1994)

    CAS  Article  Google Scholar 

  19. 19

    Moor, N., Kotik-Kogan, O., Tworowski, D., Sukhanova, M. & Safro, M. The crystal structure of the ternary complex of phenylalanyl-tRNA synthetase with tRNAPhe and a phenylalanyl-adenylate analogue reveals a conformational switch of the CCA end. Biochemistry 45, 10572–10583 (2006)

    CAS  Article  Google Scholar 

  20. 20

    Biou, V., Yaremchuk, A., Tukalo, M. & Cusack, S. The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNASer . Science 263, 1404–1410 (1994)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Eiler, S., Dock-Bregeon, A., Moulinier, L., Thierry, J. C. & Moras, D. Synthesis of aspartyl-tRNAAsp in Escherichia coli–a snapshot of the second step. EMBO J. 18, 6532–6541 (1999)

    CAS  Article  Google Scholar 

  22. 22

    Sankaranarayanan, R. et al. The structure of threonyl-tRNA synthetase-tRNAThr complex enlightens its repressor activity and reveals an essential zinc ion in the active site. Cell 97, 371–381 (1999)

    CAS  Article  Google Scholar 

  23. 23

    Briand, C. et al. An intermediate step in the recognition of tRNAAsp by aspartyl-tRNA synthetase. J. Mol. Biol. 299, 1051–1060 (2000)

    CAS  Article  Google Scholar 

  24. 24

    Théobald-Dietrich, A., Frugier, M., Giegé, R. & Rudinger-Thirion, J. Atypical archaeal tRNA pyrrolysine transcript behaves towards EF-Tu as a typical elongator tRNA. Nucleic Acids Res. 32, 1091–1096 (2004)

    Article  Google Scholar 

  25. 25

    Ambrogelly, A. et al. Pyrrolysine is not hardwired for cotranslational insertion at UAG codons. Proc. Natl Acad. Sci. USA 104, 3141–3146 (2007)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Marck, C. & Grosjean, H. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8, 1189–1232 (2002)

    CAS  Article  Google Scholar 

  27. 27

    Herring, S., Ambrogelly, A., Polycarpo, C. R. & Söll, D. Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase. Nucleic Acids Res. 35, 1270–1278 (2007)

    CAS  Article  Google Scholar 

  28. 28

    Lee, M. M. et al. Structure of Desulfitobacterium hafniense PylSc, a pyrrolysyl-tRNA synthetase. Biochem. Biophys. Res. Commun. 374, 470–474 (2008)

    CAS  Article  Google Scholar 

  29. 29

    Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997)

    CAS  Article  Google Scholar 

  30. 30

    Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  31. 31

    Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998)

    Article  Google Scholar 

  32. 32

    Herring, S., Ambrogelly, A., Polycarpo, C. R. & Söll, D. Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase. Nucleic Acids Res. 35, 1270–1278 (2007)

    CAS  Article  Google Scholar 

  33. 33

    Polycarpo, C. R. et al. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase. FEBS Lett. 580, 6695–6700 (2006)

    CAS  Article  Google Scholar 

  34. 34

    Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Yanofsky, C. & Horn, V. Tryptophan synthetase chain positions affected by mutations near the ends of the genetic map of trpA of Escherichia coli . J. Biol. Chem. 247, 4494–4498 (1972)

    CAS  PubMed  Google Scholar 

  36. 36

    Murgola, E. J. tRNA, suppression, and the code. Annu. Rev. Genet. 19, 57–80 (1985)

    CAS  Article  Google Scholar 

  37. 37

    Roberts, E., Eargle, J., Wright, D. & Luthey-Schulten, Z. MultiSeq: Unifying sequence and structure data for evolutionary analysis. BMC Bioinformatics 7, 382 (2006)

    Article  Google Scholar 

  38. 38

    Markowitz, V. M. et al. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 36, D534–D538 (2008)

    CAS  Article  Google Scholar 

  39. 39

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the beamline staff at BL41XU of SPring-8 (Harima, Japan) and NW12 of PF-AR (Tsukuba, Japan) for technical help during data collection. P.O. holds a National Science Foundation postdoctoral fellowship in Biological Informatics. This work was supported by grants from the Japan Science and Technology Agency (to O.N.), from the National Project on Protein Structural and Functional Analyses of the Ministry of Education, Culture, Sports, Science and Technology (to O.N.), from the Ministry of Education, Culture, Sports, Science and Technology (to R.I. and O.N.), from the Mitsubishi Foundation (to O.N.), from the Kurata Memorial Hitachi Science and Technology Foundation (to O.N.), from the National Institute of General Medical Sciences (to D.S.), from the Department of Energy (to D.S.), and from the National Science Foundation (to D.S.).

Author Contributions K.N. performed purification, crystallization and structure determination. S.G. and T.U. conducted biochemical analyses. R.I. performed molecular dynamics. Y.A., R.I. and O.N. assisted the structure determination. P.O’D. analysed the data and performed bioinformatic analysis. P.O’D., K.N., O.N. and D.S. wrote the paper. O.N. and D.S. conceived and supervised the work.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dieter Söll or Osamu Nureki.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary References, Supplementary Figures 1-7 and Supplementary Tables 1-2 (PDF 10887 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nozawa, K., O’Donoghue, P., Gundllapalli, S. et al. Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality. Nature 457, 1163–1167 (2009). https://doi.org/10.1038/nature07611

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.