Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quintuply orthogonal pyrrolysyl-tRNA synthetase/tRNAPyl pairs

Abstract

Mutually orthogonal aminoacyl transfer RNA synthetase/transfer RNA pairs provide a foundation for encoding non-canonical amino acids into proteins, and encoded non-canonical polymer and macrocycle synthesis. Here we discover quintuply orthogonal pyrrolysyl-tRNA synthetase (PylRS)/pyrrolysyl-tRNA (tRNAPyl) pairs. We discover empirical sequence identity thresholds for mutual orthogonality and use these for agglomerative clustering of PylRS and tRNAPyl sequences; this defines numerous sequence clusters, spanning five classes of PylRS/tRNAPyl pairs (the existing classes +N, A and B, and newly defined classes C and S). Most of the PylRS clusters belong to classes that were unexplored for orthogonal pair generation. By testing pairs from distinct clusters and classes, and pyrrolysyl-tRNAs with unusual structures, we resolve 80% of the pairwise specificities required to make quintuply orthogonal PylRS/tRNAPyl pairs; we control the remaining specificities by engineering and directed evolution. Overall, we create 924 mutually orthogonal PylRS/tRNAPyl pairs, 1,324 triply orthogonal pairs, 128 quadruply orthogonal pairs and 8 quintuply orthogonal pairs. These advances may provide a key foundation for encoded polymer synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationship between sequence identity and cross-reactivity in previously characterized ∆N PylRSs and Pyl tRNAs.
Fig. 2: Selection of candidate PylRS and tRNAPylCUA sequences and partitioning of the Pyl system into five distinct sequence-defined classes.
Fig. 3: Activity mapping of candidate PylRS enzymes and Pyl tRNAs, and discovery of new triply orthogonal PylRS/tRNAPyl pairs.
Fig. 4: Screening of engineered Pyl tRNAs permits the control of 18 out of 20 cross-reactivities between specific members of the five Pyl classes.
Fig. 5: Unique activity patterns of S PylRS enzymes enable the development of quadruply orthogonal pairs.
Fig. 6: Quintuply orthogonal PylRS/tRNAPyl pairs via directed evolution.

Similar content being viewed by others

Data availability

All materials generated or analysed in this study are available from the corresponding author upon reasonable request. All generated datasets are provided in the Supplementary Information. Protein and nucleotide sequences were obtained from the NCBI Protein and NCBI Nucleotide databases, respectively.

Code availability

The code for PylRS and tRNAPyl clustering and mutually orthogonal PylRS/tRNAPyl pair identification is available at https://github.com/JWChin-Lab/Quint-Pyl.

References

  1. Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. De La Torre, D. & Chin, J. W. Reprogramming the genetic code. Nat. Rev. Genet. 22, 169–184 (2021).

    Article  PubMed  Google Scholar 

  3. Robertson, W. E. et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372, 1057–1062 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spinck, M. et al. Genetically programmed cell-based synthesis of non-natural peptide and depsipeptide macrocycles. Nat. Chem. 15, 61–69 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Cervettini, D. et al. Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase–tRNA pairs.Nat. Biotechnol. 38, 989–999 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dunkelmann, D. L., Willis, J. C. W., Beattie, A. T. & Chin, J. W. Engineered triply orthogonal pyrrolysyl–tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids. Nat. Chem. 12, 535–544 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Willis, J. C. W. & Chin, J. W. Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs. Nat. Chem. 10, 831–837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Srinivasan, G., James, C. M. & Krzycki, J. A. Pyrrolysine encoded by UAG in archaea: charging of a UAG-decoding specialized tRNA. Science 296, 1459–1462 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Krzycki, J. A. The direct genetic encoding of pyrrolysine. Curr. Opin. Microbiol. 8, 706–712 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Neumann, H., Peak-Chew, S. Y. & Chin, J. W. Genetically encoding Nε-acetyllysine in recombinant proteins. Nat. Chem. Biol. 4, 232–234 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Borrel, G. et al. Unique characteristics of the pyrrolysine system in the 7th order of methanogens: implications for the evolution of a genetic code expansion cassette. Archaea 2014, 374146 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Park, H.-S. et al. Expanding the genetic code of Escherichia coli with phosphoserine. Science 333, 1151–1154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rogerson, D. T. et al. Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat. Chem. Biol. 11, 496–503 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hughes, R. A. & Ellington, A. D. Rational design of an orthogonal tryptophanyl nonsense suppressor tRNA. Nucleic Acids Res. 38, 6813–6830 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chatterjee, A., Sun, S. B., Furman, J. L., Xiao, H. & Schultz, P. G. A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 52, 1828–1837 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Italia, J. S. et al. Mutually orthogonal nonsense-suppression systems and conjugation chemistries for precise protein labeling at up to three distinct sites. J. Am. Chem. Soc. 141, 6204–6212 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neumann, H., Wang, K., Davis, L., Garcia-Alai, M. & Chin, J. W. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464, 441–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, K. et al. Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET. Nat. Chem. 6, 393–403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson, J. C. et al. An expanded genetic code with a functional quadruplet codon. Proc. Natl Acad. Sci. USA 101, 7566–7571 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dunkelmann, D. L., Oehm, S. B., Beattie, A. T. & Chin, J. W. A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design. Nat. Chem. 13, 1110–1117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Malyshev, D. A. et al. A semi-synthetic organism with an expanded genetic alphabet. Nature 509, 385–388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fischer, E. C. et al. New codons for efficient production of unnatural proteins in a semisynthetic organism. Nat. Chem. Biol. 16, 570–576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Y. et al. A semi-synthetic organism that stores and retrieves increased genetic information. Nature 551, 644–647 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, K. et al. Defining synonymous codon compression schemes by genome recoding. Nature 539, 59–64 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neumann, H., Slusarczyk, A. L. & Chin, J. W. De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. J. Am. Chem. Soc. 132, 2142–2144 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Beranek, V., Willis, J. C. W. & Chin, J. W. An evolved Methanomethylophilus alvus pyrrolysyl-tRNA synthetase/tRNA pair is highly active and orthogonal in mammalian cells. Biochemistry 58, 387–390 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Chatterjee, A., Xiao, H. & Schultz, P. G. Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli. Proc. Natl Acad. Sci. USA 109, 14841–14846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Italia, J. S. et al. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes. Nat. Chem. Biol. 13, 446–450 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Chin, J. W. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83, 379–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Ambrogelly, A. et al. Pyrrolysine is not hardwired for cotranslational insertion at UAG codons. Proc. Natl Acad. Sci. USA 104, 3141–3146 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elliott, T. S. et al. Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal. Nat. Biotechnol. 32, 465–472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suzuki, T. et al. Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase. Nat. Chem. Biol. 13, 1261–1266 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kobayashi, T., Yanagisawa, T., Sakamoto, K. & Yokoyama, S. Recognition of non-α-amino aubstrates by pyrrolysyl-tRNA synthetase. J. Mol. Biol. 385, 1352–1360 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Polycarpo, C. R. et al. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase. FEBS Lett. 580, 6695–6700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bindman, N. A., Bobeica, S. C., Liu, W. R. & Van Der Donk, W. A. Facile removal of leader peptides from lanthipeptides by incorporation of a hydroxy acid. J. Am. Chem. Soc. 137, 6975–6978 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, Y.-M. et al. Ligation of expressed protein α-hydrazides via genetic incorporation of an α-hydroxy acid. ACS Chem. Biol. 7, 1015–1022 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Ohtake, K. et al. Engineering an automaturing transglutaminase with enhanced thermostability by genetic code expansion with two codon reassignments. ACS Synth. Biol. 7, 2170–2176 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Polycarpo, C. et al. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc. Natl Acad. Sci. USA 101, 12450–12454 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nozawa, K. et al. Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality. Nature 457, 1163–1167 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Herring, S. et al. The amino-terminal domain of pyrrolysyl-tRNA synthetase is dispensable in vitro but required for in vivo activity. FEBS Lett. 581, 3197–3203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang, R. & Krzycki, J. A. PylSn and the homologous N-terminal domain of pyrrolysyl-tRNA synthetase bind the tRNA that is essential for the genetic encoding of pyrrolysine. J. Biol. Chem. 287, 32738–32746 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meineke, B., Heimgärtner, J., Eirich, J., Landreh, M. & Elsässer, S. J. Site-specific incorporation of two ncAAs for two-color bioorthogonal labeling and crosslinking of proteins on live mammalian cells. Cell Rep. 31, 107811 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Meineke, B., Heimgärtner, J., Lafranchi, L. & Elsässer, S. J. Methanomethylophilus alvus Mx1201 provides basis for mutual orthogonal pyrrolysyl tRNA/aminoacyl-tRNA synthetase pairs in mammalian cells. ACS Chem. Biol. 13, 3087–3096 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, H. et al. The tRNA discriminator base defines the mutual orthogonality of two distinct pyrrolysyl-tRNA synthetase/tRNAPyl pairs in the same organism. Nucleic Acids Res. 50, 4601–4615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fischer, J. T., Söll, D. & Tharp, J. M. Directed evolution of Methanomethylophilus alvus pyrrolysyl-tRNA synthetase generates a hyperactive and highly selective variant. Front. Mol. Biosci. 9, 850613 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tharp, J. M., Vargas-Rodriguez, O., Schepartz, A. & Söll, D. Genetic encoding of three distinct noncanonical amino acids using reprogrammed initiator and nonsense codons. ACS Chem. Biol. 16, 766–774 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Laslett, D. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Katayama, H., Nozawa, K., Nureki, O., Nakahara, Y. & Hojo, H. Pyrrolysine analogs as substrates for bacterial pyrrolysyl-tRNA synthetase in vitro and in vivo. Biosci. Biotechnol. Biochem. 76, 205–208 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Varani, G. & McClain, W. H. The G·U wobble base pair. EMBO Rep. 1, 18–23 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sievers, F. et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Guan, Y., Haroon, M. F., Alam, I., Ferry, J. G. & Stingl, U. Single-cell genomics reveals pyrrolysine-encoding potential in members of uncultivated archaeal candidate division MSBL1. Environ. Microbiol. Rep. 9, 404–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lorenz, R. et al. ViennaRNA package 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J.Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  58. Reis, A. C. & Salis, H. M. An automated model test system for systematic development and improvement of gene expression models. ACS Synth. Biol. 9, 3145–3156 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Cetnar, D. P. & Salis, H. M. Systematic quantification of sequence and structural determinants controlling mRNA stability in bacterial operons. ACS Synth. Biol. 10, 318–332 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Espah Borujeni, A. et al. Precise quantification of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-terminal coding sequences. Nucleic Acids Res. 45, 5437–5448 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Espah Borujeni, A. & Salis, H. M. Translation initiation is controlled by RNA folding kinetics via a ribosome drafting mechanism. J. Am. Chem. Soc. 138, 7016–7023 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Espah Borujeni, A., Channarasappa, A. S. & Salis, H. M. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res. 42, 2646–2659 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council (MRC), UK (MC_U105181009 and MC_UP_A024_1008) and an ERC Advanced Grant SGCR, all to J.W.C. For the purpose of Open Access, the MRC Laboratory of Molecular Biology has applied a CC BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission. D.L.D. was supported by the Boehringer Ingelheim Fonds and Magdalene College, Cambridge.

Author information

Authors and Affiliations

Authors

Contributions

D.L.D., A.T.B. and J.W.C. designed the project. A.T.B. and D.L.D. performed the experiments. A.T.B. generated the computational discovery pipeline with inputs from D.L.D. A.T.B., D.L.D and J.W.C. wrote the paper.

Corresponding author

Correspondence to Jason W. Chin.

Ethics declarations

Competing interests

The authors declare the following competing financial interest: J.W.C. is a founder of the company Constructive Bio. The Medical Research Council have filed a patent application on the basis of this work.

Peer review

Peer review information

Nature Chemistry thanks Heinz Neumann, Jiangyun Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Structures of non-canonical amino acids used in this study.

a. Chemical structure of Nε-tert-butyloxycarbonyl-l-lysine BocK 1. b. Chemical structure of N6-((allyloxy)carbonyl)-l-lysine (AllocK) 2.

Extended Data Fig. 2 Screening class N, A and B Pyl tRNAs for orthogonality to synthetases from other classes.

a. Screening of previously reported class N Pyl tRNAs against key active PylRS enzymes from each class (and S PylRS variants). Most class N Pyl tRNAs tested are highly specific to N+-MmPylRS. Each heatmap value represents the average of three biological replicates. All numerical values and bar charts including error bars showing s.d. are provided (Supplementary Table 2). b. Screening of previously reported A-AlvtRNAPyl mutants against key active PylRS enzymes from each class (and S PylRS variants). Multiple mutants are highly specific to A-1R26PylRS. Each heatmap value represents the average of three biological replicates. All numerical values and bar charts including error bars showing s.d. are provided (Supplementary Table 2). c. Screening of previously reported B-InttRNAPyl mutants against key active PylRS enzymes from each class (and S PylRS variants). The activity of B-Lum1PylRS with class B Pyl tRNAs is closely matched by S-ClosPylRS, S-I2PylRS, and – most problematically – C-NitraPylRS. Each heatmap value represents the average of three biological replicates. All numerical values and bar charts including error bars showing s.d. are provided (Supplementary Table 2).

Extended Data Fig. 3 Families of quadruply orthogonal pairs containing both S∆B and S∆C PylRSs.

a. Activity heatmap of the two (overlapping) quadruplet families with both class B and class C PylRS enzymes substituted by S PylRS variants (labelled in two shades of blue), shown along with the most orthogonal fifth pair from the final class (class N or class S). The tRNAPyl that requires engineering or replacement to abolish unwanted cross-reactions is labelled in red, while the Pyl tRNAs that already satisfy all necessary orthogonality requirements are labelled in green. Each heatmap value represents the average of three biological replicates. All numerical values and bar charts including error bars showing s.d. are provided (Supplementary Table 2).b. Schematic of the interactions within the quadruplets from a (both o.c. 2.9). For both, cross-reactivity (red arrow) between class N and class S must be eliminated to yield quintuply orthogonal pairs. In addition, although the problematic cross-reaction between class C PylRS and class B tRNAPyl has been diminished by substitution of both class B and C pairs by pairs formed with a S PylRS variant, the remaining cross-reactivity (yellow arrow) limits the o.c. of these sets. Each heatmap value represents the average of three biological replicates. All numerical values and bar charts including error bars showing s.d. are provided (Supplementary Table 2).

Extended Data Fig. 4 Directed evolution of Pyl tRNAs and resulting quadruply orthogonal pairs.

a. Heatmap showing the activity of hits obtained from positive selection of the library with S∆B-ClosPylRS followed by successive negative screening with the PylRS enzymes from classes N, A, C and S. Each heatmap value represents the average of three biological replicates. All numerical values and bar charts including error bars showing s.d. are provided (Supplementary Table 2). b. Heatmap showing the activity of the tRNAPyl hit S-I2tRNAPyl-S52 obtained from positive selection of the library with S+-DebPylRS followed by successive negative screening with the PylRS enzymes from the other classes. This tRNAPyl exhibits selective activity with S+-DebPylRS. Each heatmap value represents the average of three biological replicates. All numerical values and bar charts including error bars showing s.d. are provided (Supplementary Table 2). c. Activity heatmaps from each family of quadruply orthogonal PylRS/tRNAPyl pairs obtained following the tRNAPyl directed evolution strategy; the quadruplets with the highest o.c. are shown. Dark grey box: quadruply orthogonal families discovered in Fig. 5. Light grey box: quadruply orthogonal family discovered in Fig. 5, but which has a higher o.c. when incorporating a newly evolved tRNAPyl. Orthogonality coefficient, o.c., is shown in grey. Each heatmap value represents the average of three biological replicates. All numerical values and bar charts including error bars showing s.d. are provided (Supplementary Table 2).

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–10, and Tables 4 and 5.

Reporting Summary

Supplementary Tables

Supplementary Tables 1 (sheets 1–4), 2 (sheets 5–11), 3 (sheets 12–14), 6 (sheets 15 and 16) and 7 (sheets 17 and 18).

Supplementary Code 1

Custom scripts used for aaRS and tRNA clustering, and identification of sets of mutually orthogonal aaRS/tRNA pairs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beattie, A.T., Dunkelmann, D.L. & Chin, J.W. Quintuply orthogonal pyrrolysyl-tRNA synthetase/tRNAPyl pairs. Nat. Chem. 15, 948–959 (2023). https://doi.org/10.1038/s41557-023-01232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01232-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research