Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strigolactone inhibition of shoot branching

Abstract

A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence that carotenoid cleavage dioxygenase 8 shoot branching mutants of pea are strigolactone deficient and that strigolactone application restores the wild-type branching phenotype to ccd8 mutants. Moreover, we show that other branching mutants previously characterized as lacking a response to the branching inhibition signal also lack strigolactone response, and are not deficient in strigolactones. These responses are conserved in Arabidopsis. In agreement with the expected properties of the hormonal signal, exogenous strigolactone can be transported in shoots and act at low concentrations. We suggest that endogenous strigolactones or related compounds inhibit shoot branching in plants. Furthermore, ccd8 mutants demonstrate the diverse effects of strigolactones in shoot branching, mycorrhizal symbiosis and parasitic weed interaction.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mycorrhizae and parasitic plant responses in pea ccd8 mutants.
Figure 2: Detection of two strigolactones in pea by LC/MS-MS.
Figure 3: ccd8 mutant root exudates of pea are deficient in strigolactones compared to wild-type and rms4 plants.
Figure 4: GR24 inhibits bud outgrowth in pea.
Figure 5: GR24 inhibits bud outgrowth in Arabidopsis.

References

  1. Napoli, C. Highly branched phenotype of the petunia dad1–1 mutant is reversed by grafting. Plant Physiol. 111, 27–37 (1996)

    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Beveridge, C. A., Symons, G. M., Murfet, I. C., Ross, J. J. & Rameau, C. The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft transmissible signal(s). Plant Physiol. 115, 1251–1258 (1997)

    CAS  PubMed Central  Article  Google Scholar 

  3. Beveridge, C. A. Axillary bud outgrowth: sending a message. Curr. Opin. Plant Biol. 9, 35–40 (2006)

    CAS  PubMed  Article  Google Scholar 

  4. Foo, E., Turnbull, C. G. & Beveridge, C. A. Long-distance signaling and the control of branching in the rms1 mutant of pea. Plant Physiol. 126, 203–209 (2001)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Morris, S. E., Turnbull, C. G., Murfet, I. C. & Beveridge, C. A. Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol. 126, 1205–1213 (2001)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Dodd, I. C., Ferguson, B. J. & Beveridge, C. A. Apical wilting and petiole xylem vessel diameter of the rms2 branching mutant of pea are shoot controlled and independent of a long-distance signal regulating branching. Plant Cell Physiol. 49, 791–800 (2008)

    CAS  PubMed  Article  Google Scholar 

  7. Booker, J. et al. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14, 1232–1238 (2004)

    CAS  PubMed  Article  Google Scholar 

  8. Auldridge, M. E. et al. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J. 45, 982–993 (2006)

    CAS  PubMed  Article  Google Scholar 

  9. Bouvier, F., Isner, J. C., Dogbo, O. & Camara, B. Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci. 10, 187–194 (2005)

    CAS  PubMed  Article  Google Scholar 

  10. Sorefan, K. et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 17, 1469–1474 (2003)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Johnson, X. et al. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol. 142, 1014–1026 (2006)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Schwartz, S. H., Qin, X. & Loewen, M. C. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J. Biol. Chem. 279, 46940–46945 (2004)

    CAS  PubMed  Article  Google Scholar 

  13. Mouchel, C. F. & Leyser, O. Novel phytohormones involved in long-range signaling. Curr. Opin. Plant Biol. 10, 473–476 (2007)

    CAS  PubMed  Article  Google Scholar 

  14. Doust, A. N. Grass architecture: genetic and environmental control of branching. Curr. Opin. Plant Biol. 10, 21–25 (2007)

    PubMed  Article  Google Scholar 

  15. Stirnberg, P., van De Sande, K. & Leyser, H. M. MAX1 and MAX2 control shoot lateral branching in Arabidopsis . Development 129, 1131–1141 (2002)

    CAS  PubMed  Google Scholar 

  16. Ishikawa, S. et al. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 46, 79–86 (2005)

    CAS  PubMed  Article  Google Scholar 

  17. Beveridge, C. A., Ross, J. J. & Murfet, I. C. Branching in pea (action of genes Rms3 and Rms4). Plant Physiol. 110, 859–865 (1996)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Booker, J. et al. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell 8, 443–449 (2005)

    CAS  PubMed  Article  Google Scholar 

  19. Cook, C. E. et al. Germination stimulants. 2. The structure of strigol — a potent seed germination stimulant for witchweed (Striga lutea Tour.). J. Am. Chem. Soc. 94, 6198–6199 (1972)

    CAS  Article  Google Scholar 

  20. Bouwmeester, H. J., Roux, C., Lopez-Raez, J. A. & Becard, G. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12, 224–230 (2007)

    CAS  PubMed  Article  Google Scholar 

  21. Brachmann, A. & Parniske, M. The most widespread symbiosis on Earth. PLoS Biol. 4, e239 (2006)

    PubMed Central  Article  Google Scholar 

  22. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 1997)

    Google Scholar 

  23. Akiyama, K., Matsuzaki, K. & Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827 (2005)

    ADS  CAS  Article  Google Scholar 

  24. Besserer, A. et al. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4, e226 (2006)

    PubMed  PubMed Central  Article  Google Scholar 

  25. Yoneyama, K., Yoneyama, K., Takeuchi, Y. & Sekimoto, H. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225, 1031–1038 (2007)

    CAS  PubMed  Article  Google Scholar 

  26. Yoneyama, K. et al. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227, 125–132 (2007)

    CAS  PubMed  Article  Google Scholar 

  27. Goldwasser, Y., Yoneyama, K., Xie, X. & Yoneyama, K. Production of strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination. Plant Growth Regul. 55, 21–28 (2008)

    CAS  Article  Google Scholar 

  28. Matusova, R. et al. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 139, 920–934 (2005)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Xie, X. et al. 2'-epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J. Agric. Food Chem. 55, 8067–8072 (2007)

    CAS  PubMed  Article  Google Scholar 

  30. Xie, X. et al. Isolation and identification of alectrol as (+)-orobanchyl acetate, a germination stimulant for root parasitic plants. Phytochemistry 69, 427–431 (2008)

    CAS  PubMed  Article  Google Scholar 

  31. Yoneyama, K. et al. Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol. 179, 484–494 (2008)

    CAS  PubMed  Article  Google Scholar 

  32. Stirnberg, P., Furner, I. J. & Leyser, H. M. O. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 50, 80–94 (2007)

    CAS  PubMed  Article  Google Scholar 

  33. Li, C. J. & Bangerth, F. Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol. Plant. 106, 415–420 (1999)

    CAS  Article  Google Scholar 

  34. Turnbull, C. G., Booker, J. P. & Leyser, H. M. Micrografting techniques for testing long-distance signalling in Arabidopsis . Plant J. 32, 255–262 (2002)

    CAS  PubMed  Article  Google Scholar 

  35. Cowling, R. J., Kamiya, Y., Seto, H. & Harberd, N. P. Gibberellin dose-response regulation of GA4 gene transcript levels in Arabidopsis . Plant Physiol. 117, 1195–1203 (1998)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Booker, J., Chatfield, S. & Leyser, O. Auxin acts in xylem-associated or medullary cells to mediate apical dominance. Plant Cell 15, 495–507 (2003)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Nemhauser, J. L., Mockler, T. C. & Chory, J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis . PLoS Biol. 2, e258 (2004)

    PubMed  PubMed Central  Article  Google Scholar 

  38. Foo, E. et al. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17, 464–474 (2005)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Remy, W., Taylor, T. N., Hass, H. & Kerp, H. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl Acad. Sci. USA 91, 11841–11843 (1994)

    ADS  CAS  PubMed  Article  Google Scholar 

  40. Kenrick, P. & Crane, P. R. The origin and early evolution of plants on land. Nature 389, 33–39 (1997)

    ADS  CAS  Article  Google Scholar 

  41. Lopez-Raez, J. A. et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 178, 863–874 (2008)

    CAS  PubMed  Article  Google Scholar 

  42. Strader, L. C. & Bartel, B. A new path to auxin. Nature Chem. Biol. 4, 337–339 (2008)

    CAS  Article  Google Scholar 

  43. Miyawaki, K. et al. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl Acad. Sci. USA 103, 16598–16603 (2006)

    ADS  CAS  PubMed  Article  Google Scholar 

  44. Berleth, T., Krogan, N. T. & Scarpella, E. Auxin signals-turning genes on and turning cells around. Curr. Opin. Plant Biol. 7, 553–563 (2004)

    CAS  PubMed  Article  Google Scholar 

  45. Beveridge, C. A., Symons, G. M. & Turnbull, C. G. N. Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes Rms1 and Rms2 . Plant Physiol. 123, 689–697 (2000)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Dun, E. A., Ferguson, B. J. & Beveridge, C. A. Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiol. 142, 812–819 (2006)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Hewitt, E. J. Sand and Water Culture: Methods Used in the Study of Plant Nutrition 2nd edn (London and Reading: Commonwealth Agricultural Bureau, The Eastern Press, 1966)

    Google Scholar 

  48. Giovannetti, M. & Mosse, B. An evaluation of techniques for measuring vesicular-arbuscular infection in roots. New Phytol. 84, 489–500 (1980)

    Article  Google Scholar 

  49. Vierheilig, H., Coughlan, A. P., Wyss, U. & Piche, Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol. 64, 5004–5007 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Arumingtyas, E. L., Floyd, R. S., Gregory, M. J. & Murfet, I. C. Branching in Pisum: inheritance and allelism tests with 17 ramosus mutants. Pisum Genet. 24, 17–31 (1992)

    Google Scholar 

  51. Symons, G. M. & Murfet, I. C. Inheritance and allelism tests on six further branching mutants in pea. Pisum Genet. 29, 1–6 (1997)

    Google Scholar 

Download references

Acknowledgements

V.G.-R. was supported by the French Ministry of Research and Higher Education. S.F. was supported by a grant from ANR. H. B. and R. M. were supported by a grant from The Netherlands Organisation for Scientific Research (NWO; VICI-grant). The authors are grateful to A. Marion-Poll for discussions, H. M. O. Leyser for supply of the Arabidopsis max4 seed, K. Yoneyama for the gift of orobanchyl acetate, and D. M. Joel for providing O. crenata seeds. The UPLC/QTOF mass spectrometer was made available to us by the Institut des Technologies Avancées du Vivant (Toulouse, France). We thank K. Condon for plant husbandry, the ARC Centre of Excellence for Integrative Legume Research and the European Union FP6 Grain Legumes Integrated Project for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guillaume Bécard or Catherine Rameau.

Supplementary information

Supplementary Information

The file contains Supplementary Figure 1 with Legend. (PDF 122 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gomez-Roldan, V., Fermas, S., Brewer, P. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008). https://doi.org/10.1038/nature07271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07271

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing