X-ray structure of a prokaryotic pentameric ligand-gated ion channel


Pentameric ligand-gated ion channels (pLGICs) are key players in the early events of electrical signal transduction at chemical synapses. The family codes for a structurally conserved scaffold of channel proteins that open in response to the binding of neurotransmitter molecules. All proteins share a pentameric organization of identical or related subunits that consist of an extracellular ligand-binding domain followed by a transmembrane channel domain. The nicotinic acetylcholine receptor (nAChR) is the most thoroughly studied member of the pLGIC family (for recent reviews see refs 1–3). Two sources of structural information provided an architectural framework for the family. The structure of the soluble acetylcholine-binding protein (AChBP) defined the organization of the extracellular domain and revealed the chemical basis of ligand interaction4,5,6. Electron microscopy studies of the nAChR from Torpedo electric ray have yielded a picture of the full-length protein and have recently led to the interpretation of an electron density map at 4.0 Å resolution7,8,9. Despite the wealth of experimental information, high-resolution structures of any family member have so far not been available. Until recently, the pLGICs were believed to be only expressed in multicellular eukaryotic organisms. The abundance of prokaryotic genome sequences, however, allowed the identification of several homologous proteins in bacterial sources10,11. Here we present the X-ray structure of a prokaryotic pLGIC from the bacterium Erwinia chrysanthemi (ELIC) at 3.3 Å resolution. Our study reveals the first structure of a pLGIC at high resolution and provides an important model system for the investigation of the general mechanisms of ion permeation and gating within the family.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: ELIC structure.
Figure 2: Structure of the extracellular domain.
Figure 3: ELIC pore.
Figure 4: Schematic model of pore opening.

Accession codes

Primary accessions

Protein Data Bank


  1. 1

    Karlin, A. Emerging structure of the nicotinic acetylcholine receptors. Nature Rev. Neurosci. 3, 102–114 (2002)

    CAS  Article  Google Scholar 

  2. 2

    Lester, H. A., Dibas, M. I., Dahan, D. S., Leite, J. F. & Dougherty, D. A. Cys-loop receptors: new twists and turns. Trends Neurosci. 27, 329–336 (2004)

    CAS  Article  Google Scholar 

  3. 3

    Sine, S. M. & Engel, A. G. Recent advances in Cys-loop receptor structure and function. Nature 440, 448–455 (2006)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Celie, P. H. et al. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41, 907–914 (2004)

    CAS  Article  Google Scholar 

  6. 6

    Hansen, S. B. et al. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J. 24, 3635–3646 (2005)

    CAS  Article  Google Scholar 

  7. 7

    Unwin, N. Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett. 555, 91–95 (2003)

    CAS  Article  Google Scholar 

  8. 8

    Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346, 967–989 (2005)

    CAS  Article  Google Scholar 

  10. 10

    Tasneem, A., Iyer, L. M., Jakobsson, E. & Aravind, L. Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol. 6, R4 (2005)

    Article  Google Scholar 

  11. 11

    Bocquet, N. et al. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445, 116–119 (2007)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Adams, D. J., Dwyer, T. M. & Hille, B. The permeability of endplate channels to monovalent and divalent metal cations. J. Gen. Physiol. 75, 493–510 (1980)

    CAS  Article  Google Scholar 

  13. 13

    Gallivan, J. P. & Dougherty, D. A. Cation–pi interactions in structural biology. Proc. Natl Acad. Sci. USA 96, 9459–9464 (1999)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Purohit, P., Mitra, A. & Auerbach, A. A stepwise mechanism for acetylcholine receptor channel gating. Nature 446, 930–933 (2007)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Campos-Caro, A. et al. A single residue in the M2–M3 loop is a major determinant of coupling between binding and gating in neuronal nicotinic receptors. Proc. Natl Acad. Sci. USA 93, 6118–6123 (1996)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Grosman, C., Salamone, F. N., Sine, S. M. & Auerbach, A. The extracellular linker of muscle acetylcholine receptor channels is a gating control element. J. Gen. Physiol. 116, 327–340 (2000)

    CAS  Article  Google Scholar 

  17. 17

    Kash, T. L., Jenkins, A., Kelley, J. C., Trudell, J. R. & Harrison, N. L. Coupling of agonist binding to channel gating in the GABAA receptor. Nature 421, 272–275 (2003)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Dutzler, R., Campbell, E. B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Wilson, G. & Karlin, A. Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method. Proc. Natl Acad. Sci. USA 98, 1241–1248 (2001)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Paas, Y. et al. Pore conformations and gating mechanism of a Cys-loop receptor. Proc. Natl Acad. Sci. USA 102, 15877–15882 (2005)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Le Novere, N. & Changeux, J. P. LGICdb: the ligand-gated ion channel database. Nucleic Acids Res. 29, 294–295 (2001)

    CAS  Article  Google Scholar 

  23. 23

    Konno, T. et al. Rings of anionic amino acids as structural determinants of ion selectivity in the acetylcholine receptor channel. Proc R. Soc. Lond. B 244, 69–79 (1991)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Cohen, B. N., Labarca, C., Davidson, N. & Lester, H. A. Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations. J. Gen. Physiol. 100, 373–400 (1992)

    CAS  Article  Google Scholar 

  25. 25

    Corringer, P. J. et al. Mutational analysis of the charge selectivity filter of the alpha7 nicotinic acetylcholine receptor. Neuron 22, 831–843 (1999)

    CAS  Article  Google Scholar 

  26. 26

    Gunthorpe, M. J. & Lummis, S. C. Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily. J. Biol. Chem. 276, 10977–10983 (2001)

    CAS  Article  Google Scholar 

  27. 27

    Imoto, K. et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648 (1988)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Revah, F. et al. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353, 846–849 (1991)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Beckstein, O. & Sansom, M. S. A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor. Phys. Biol. 3, 147–159 (2006)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Cymes, G. D., Ni, Y. & Grosman, C. Probing ion-channel pores one proton at a time. Nature 438, 975–980 (2005)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993)

    CAS  Article  Google Scholar 

  32. 32

    Collaborative Computational Project, Number 4. The CCP4 suite: programs for X-ray crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  33. 33

    Pape, T. & Schneider, T. R. HKL2MAP: a graphical user interface for phasing with SHELX programs. J. Appl. Cryst. 37, 843–844 (2004)

    CAS  Article  Google Scholar 

  34. 34

    Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002)

    Article  Google Scholar 

  35. 35

    de La Fortelle, E. & Bricogne, G. in Methods in Enzymology (eds Carter, C. W. & Sweet, R. M.) 492–494 (Academic, New York, 1997)

    Google Scholar 

  36. 36

    Cowtan, K. An automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newslett. Protein Crystallogr. 31, 34–38 (1994)

    Google Scholar 

  37. 37

    Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  38. 38

    Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    CAS  Article  Google Scholar 

  39. 39

    Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. 14, 354–360. J. Mol. Graph. 14, 354–360, 376 (1996)

    CAS  Article  Google Scholar 

  40. 40

    Sanner, M. F., Olson, A. J. & Spehner, J. C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996)

    CAS  Article  Google Scholar 

  41. 41

    Nimigean, C. M. & Miller, C. Na+ block and permeation in a K+ channel of known structure. J. Gen. Physiol. 120, 323–335 (2002)

    CAS  Article  Google Scholar 

  42. 42

    Brooks, B. R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)

    CAS  Article  Google Scholar 

  43. 43

    Im, W., Beglov, D. & Roux, B. Continuum salvation model: electrostatic forces from numerical solutions to the Poisson–Bolztmann equation. Comput. Phys. Commun. 111, 59–75 (1998)

    CAS  ADS  Article  Google Scholar 

Download references


We thank I. Toth from the Scottish Crop Research Institute for providing g-DNA of E. chrysanthemi, B. Blattmann and A. Haisch for assistance with crystal screening, D. Sargent for help with Xe derivatization, C. Schulze-Briese and the staff of the X06SA beamline for support during data collection, the Protein Analysis Group at the Functional Genomics Center of the University of Zürich for help with mass spectrometry, R. MacKinnon for comments on the manuscript and members of the Dutzler laboratory for help in all stages of the project. Data collection was performed at the Swiss Light Source of the Paul Scherrer Institute. This work was supported by a grant from the National Center for Competence in Research in Structural Biology and the EMBO Young Investigator Program to R.D. R.J.C.H. is affiliated with the Molecular Life Sciences Ph.D. Program of the University/ETH Zürich.

Author Contributions R.D. and R.J.C.H. designed the project. R.J.C.H. performed all experiments. R.D. assisted in data collection, structure determination and electrostatic calculations. R.D. and R.J.C.H. jointly wrote the manuscript.

Author information



Corresponding author

Correspondence to Raimund Dutzler.

Additional information

Coordinates have been deposited in the Protein Data Bank under code 2vl0.

Supplementary information

Supplementary Information

The file contains Supplementary Figures S1-S7 with Legends. (PDF 2638 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hilf, R., Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452, 375–379 (2008). https://doi.org/10.1038/nature06717

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.