Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean


The Earth’s mantle beneath ocean ridges is widely thought to be depleted by previous melt extraction, but well homogenized by convective stirring. This inference of homogeneity has been complicated by the occurrence of portions enriched in incompatible elements. Here we show that some refractory abyssal peridotites from the ultraslow-spreading Gakkel ridge (Arctic Ocean) have very depleted 187Os/188Os ratios with model ages up to 2 billion years, implying the long-term preservation of refractory domains in the asthenospheric mantle rather than their erasure by mantle convection. The refractory domains would not be sampled by mid-ocean-ridge basalts because they contribute little to the genesis of magmas. We thus suggest that the upwelling mantle beneath mid-ocean ridges is highly heterogeneous, which makes it difficult to constrain its composition by mid-ocean-ridge basalts alone. Furthermore, the existence of ancient domains in oceanic mantle suggests that using osmium model ages to constrain the evolution of continental lithosphere should be approached with caution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Sketch map of dredge hauls on Gakkel ridge.
Figure 2: Sample composition indicating partial melting and melt refertilization histories.
Figure 3: Diagram of 187Os/188Os versus Os content and bulk Al2O3.
Figure 4: Correlation between Re/Os ratios and bulk Al 2 O 3 contents.
Figure 5: Schematic diagram of the upwelling asthenospheric mantle beneath mid-ocean ridges.


  1. 1

    Dupré, B. & Allègre, C. J. Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303, 142–146 (1983)

    ADS  Article  Google Scholar 

  2. 2

    Hart, S. R. A large-scale isotope anomaly in Southern Hemisphere mantle. Nature 309, 753–757 (1984)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Zindler, A. & Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment: isotope evidence. Science 256, 517–520 (1992)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Hofmann, A. W. Mantle geochemistry: The message from oceanic volcanism. Nature 385, 219–229 (1997)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Graham, D. W. in Noble Gases in Geochemistry and Cosmochemistry. Reviews in Mineralogy and Geochemistry Vol. 47 (eds Porcelli, D., Ballentine, C. J. & Wieler, R.) 247–317 (Geochemical Society and Mineralogical Society of America, Washington DC, 2002)

    Google Scholar 

  7. 7

    Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5 10.1029/2003GC000597 (2004)

  8. 8

    Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Andres, M., Blichert-Toft, J. & Schilling, J.-G. Nature of the depleted upper mantle beneath the Atlantic: evidence from Hf isotopes in normal mid-ocean ridge basalts from 79° N to 55° S. Earth Planet. Sci. Lett. 225, 89–103 (2004)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Graham, D. W. et al. Cryptic striations in the upper mantle revealed by hafnium isotopes in southeast Indian ridge basalts. Nature 440, 199–202 (2006)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Brandon, A. D. et al. 190Pt–186Os and 187Re–187Os systematics of abyssal peridotites. Earth Planet. Sci. Lett. 177, 319–335 (2000)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Harvey, J. et al. Ancient melt extraction from the oceanic upper mantle revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 244, 606–621 (2006)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Michael, P. J. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423, 956–961 (2003)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Snow, J. Petrology Group ARK, XX-2. in The Expeditions ARKTIS-XX/1 and XX/2 of the Research Vessel “Polarstern” in 2004 (eds Budéus, G. & Lemke, P.) Rep. Polar Marine Res. 544, 153–208 (2007)

    Google Scholar 

  16. 16

    Shirey, S. B. & Walker, R. J. The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annu. Rev. Earth Planet. Sci. 26, 423–500 (1998)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Parkinson, I. J., Hawkesworth, C. J. & Cohen, A. S. Ancient mantle in a modern arc: Osmium isotopes in Izu–Bonin–Mariana forearc peridotites. Science 281, 2011–2013 (1998)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Jokat, W. et al. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature 423, 962–965 (2003)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Goldstein, S. L. et al. Isotope geochemistry of Gakkel ridge basalts and origin of a ‘DUPAL’ signature. Ofioliti 31, 234 (2006)

    Google Scholar 

  20. 20

    Hellebrand, E., Snow, J. E., Dick, H. J. B. & Hofmann, A. W. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410, 677–681 (2001)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Hellebrand, E., Snow, J. E., Hoppe, P. & Hofmann, A. W. Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J. Petrol. 43, 2305–2338 (2002)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Meisel, T., Walker, R. J. & Morgan, J. W. The osmium isotopic composition of the Earth's primitive upper mantle. Nature 383, 517–520 (1996)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Alard, O. et al. In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature 436, 1005–1008 (2005)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Reisberg, L. & Lorand, J. P. Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature 376, 159–162 (1995)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Snow, J. E. & Schmidt, G. Proterozoic melting in the northern peridotite Massif, Zabargad Island: Os isotopic evidence. Terra Nova 11, 45–50 (1999)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Snow, J. E., Schmidt, G. & Rampone, E. Os isotopes and highly siderophile elements (HSE) in the Ligurian ophiolites, Italy. Earth Planet. Sci. Lett. 175, 119–132 (2000)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Pearson, D. G. et al. Re–Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem. Geol. 208, 29–59 (2004)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Hassler, D. R. & Shimizu, N. Osmium isotopic evidence for ancient subcontinental lithospheric mantle beneath the Kerguelen Islands, southern Indian Ocean. Science 280, 418–421 (1998)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Seyler, M., Lorand, J. P., Toplis, M. J. & Godard, G. Asthenospheric metasomatism beneath the mid-ocean ridge: Evidence from depleted abyssal peridotites. Geology 32, 301–304 (2004)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Meisel, T., Walker, R. J., Irving, A. J. & Lorand, J. P. Osmium isotopic compositions of mantle xenoliths: A global perspective. Geochim. Cosmochim. Acta 65, 1311–1323 (2001)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Snow, J. E. & Reisberg, L. Os isotopic systematics of the MORB mantle: Results from altered abyssal peridotites. Earth Planet. Sci. Lett. 133, 411–421 (1995)

    CAS  ADS  Article  Google Scholar 

  32. 32

    Standish, J. J. et al. Abyssal peridotite osmium isotopic compositions from Cr-spinel. Geochem. Geophys. Geosys. 3 10.1029/2001GC000161 (2002)

  33. 33

    Escrig, S., Schiano, P., Schilling, J.-G. & Allègre, C. Rhenium–osmium isotope systematics in MORB from the Southern Mid-Atlantic Ridge (40°–50° S). Earth Planet. Sci. Lett. 235, 528–548 (2005)

    CAS  ADS  Article  Google Scholar 

  34. 34

    Rehkämper, M. et al. Non-chondritic platinum-group element ratios in oceanic mantle lithosphere; petrogenetic signature of melt percolation? Earth Planet. Sci. Lett. 172, 65–81 (1999)

    ADS  Article  Google Scholar 

  35. 35

    Walker, R. J., Prichard, H. M., Ishiwatari, A. & Pimentel, M. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites. Geochim. Cosmochim. Acta 66, 329–345 (2002)

    CAS  ADS  Article  Google Scholar 

  36. 36

    Hauri, E. H. Osmium isotopes and mantle convection. Phil. Trans. R. Soc. Lond. 360, 2371–2382 (2002)

    CAS  ADS  Article  Google Scholar 

  37. 37

    Morgan, J. P. & Morgan, W. J. Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. Earth Planet. Sci. Lett. 170, 215–239 (1999)

    ADS  Article  Google Scholar 

  38. 38

    Meibom, A. et al. Re–Os isotopic evidence for long-lived heterogeneity and equilibration processes in the Earth’s upper mantle. Nature 419, 705–708 (2002)

    CAS  ADS  Article  Google Scholar 

  39. 39

    Walker, R. J. et al. 187Os–186Os systematics of Os–Ir–Ru alloy grains from southwestern Oregon. Earth Planet. Sci. Lett. 230, 211–226 (2005)

    CAS  ADS  Article  Google Scholar 

  40. 40

    Frei, R. et al. Os isotope heterogeneity of the upper mantle: Evidence from the Mayari–Baracoa ophiolite belt in eastern Cuba. Earth Planet. Sci. Lett. 241, 466–476 (2006)

    CAS  ADS  Article  Google Scholar 

  41. 41

    Pearson, D. G., Parman, S. W. & Nowell, G. M. A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449, 202–205 (2007)

    CAS  ADS  Article  Google Scholar 

  42. 42

    Davies, G. F. Stirring geochemistry in mantle convection models with stiff plates and slabs. Geochim. Cosmochim. Acta 66, 3125–3142 (2002)

    CAS  ADS  Article  Google Scholar 

  43. 43

    Wood, D. A. et al. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean-floor: Nature of mantle source inhomogeneities. Contrib. Mineral. Petrol. 70, 319–339 (1979)

    CAS  ADS  Article  Google Scholar 

  44. 44

    Le Roex, A. P., Dick, H. J. B. & Watkins, R. T. Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11° 53′ E to 14° 38′ E. Contrib. Mineral. Petrol. 110, 253–268 (1992)

    CAS  ADS  Article  Google Scholar 

  45. 45

    Hellebrand, E., Snow, J. E., Mostefaoui, S. & Hoppe, P. Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel ridge: a SIMS and NanoSIMS study. Contrib. Mineral. Petrol. 150, 486–504 (2005)

    CAS  ADS  Article  Google Scholar 

  46. 46

    Büchl, A. et al. Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos Ophiolite. Earth Planet. Sci. Lett. 204, 385–402 (2002)

    ADS  Article  Google Scholar 

  47. 47

    Anders, E. & Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989)

    CAS  ADS  Article  Google Scholar 

  48. 48

    Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661–2678 (1990)

    ADS  Article  Google Scholar 

  49. 49

    Brunelli, D. et al. Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema lithospheric section (Mid-Atlantic ridge). J. Petrol. 47, 745–771 (2006)

    CAS  ADS  Article  Google Scholar 

  50. 50

    Roy-Barman, M. & Allégre, C. J. 187Os/186Os ratios of mid-ocean ridge basalts and abyssal peridotites. Geochim. Cosmochim. Acta 58, 5043–5054 (1994)

    CAS  ADS  Article  Google Scholar 

Download references


We thank the Captain and crew of PFS Polarstern expedition ARK XX/2 and the other participants in the AMORE 2001 expedition. This work was supported by the Max-Planck Institute for Chemistry and the Deutsche Forschungsgemeinschaft to J.E.S. We thank N. Groschopf and D. Kuzmin for help with electron microprobe analyses, K. P. Jochum, B. Stoll and K. Herwig for help with laser ablation ICPMS measurements, K. Zentel for help with the Os-PGE experiment, and S. Shirey for comments on the manuscript. C.-Z.L. acknowledges scholarships from both Chinese Academy of Sciences and Max-Planck Society.

Author Contributions C.-Z.L. and G.B. did the Os-PGE measurements on samples collected by two Arctic expeditions proposed and carried out by J.E.S., together with E.H., A.v.d.H. and A.B., who also provided preliminary and supporting data. A.W.H. provided intellectual and material support. All authors contributed to interpretation of the results and writing of the manuscript.

Author information



Corresponding author

Correspondence to Chuan-Zhou Liu.

Supplementary information

Supplementary Table

The file contains Supplementary Table 1. (PDF 33 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, CZ., Snow, J., Hellebrand, E. et al. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452, 311–316 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing