Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly heterogeneous depleted mantle recorded in the lower oceanic crust

Abstract

The Earth’s mantle is heterogeneous as a result of early planetary differentiation and subsequent crustal recycling during plate tectonics. Radiogenic isotope signatures of mid-ocean ridge basalts have been used for decades to map mantle composition, defining the depleted mantle endmember. These lavas, however, homogenize via magma mixing and may not capture the full chemical variability of their mantle source. Here, we show that the depleted mantle is significantly more heterogeneous than previously inferred from the compositions of lavas at the surface, extending to highly enriched compositions. We perform high-spatial-resolution isotopic analyses on clinopyroxene and plagioclase from lower crustal gabbros drilled on a depleted ridge segment of the northern Mid-Atlantic Ridge. These primitive cumulate minerals record nearly the full heterogeneity observed along the northern Mid-Atlantic Ridge, including hotspots. Our results demonstrate that substantial mantle heterogeneity is concealed in the lower oceanic crust and that melts derived from distinct mantle components can be delivered to the lower crust on a centimetre scale. These findings provide a starting point for re-evaluation of models of plate recycling, mantle convection and melt transport in the mantle and the crust.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isotopic compositions of Atlantis Massif cumulate minerals.
Fig. 2: Isotopic compositions of cumulate minerals, abyssal peridotites and MORBs along the northern MAR and results of geochemical modelling.
Fig. 3: Intrasample heterogeneity.
Fig. 4: Frequency distribution of Nd isotopic compositions.
Fig. 5: Illustration of magma delivery from a two-component mantle to the crust.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and the Methods and in the PetDB data repository (http://www.earthchem.org/petdbWeb/search/readydata/MAR55S-52N_major_trace_isotope.csv).

Code availability

The code used to calculate adiabatic melting of a two-component mantle source, Melt-PX (ref. 52), can be accessed at https://doi.org/10.1002/2015JB012762.

References

  1. Allègre, C. J. & Turcotte, D. L. Implications of a two-component marble-cake mantle. Nature 323, 123–127 (1986).

    Article  Google Scholar 

  2. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  Google Scholar 

  3. Hart, S. R. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet. Sci. Lett. 90, 273–296 (1988).

    Article  Google Scholar 

  4. White, W. M. Sources of oceanic basalts: radiogenic isotopic evidence. Geology 13, 115–118 (1985).

    Article  Google Scholar 

  5. Cohen, R. S., Evensen, N. M., Hamilton, P. J. & O’Nions, R. K. U–Pb, Sm–Nd and Rb–Sr systematics of mid-ocean ridge basalt glasses. Nature 283, 149–153 (1980).

    Article  Google Scholar 

  6. Batiza, R. Inverse relationship between Sr isotope diversity and rate of oceanic volcanism has implications for mantle heterogeneity. Nature 309, 440–441 (1984).

    Article  Google Scholar 

  7. Cipriani, A., Brueckner, H. K., Bonatti, E. & Brunelli, D. Oceanic crust generated by elusive parents: Sr and Nd isotopes in basalt-peridotite pairs from the Mid-Atlantic Ridge. Geology 32, 657–660 (2004).

    Article  Google Scholar 

  8. Stracke, A. et al. Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth Planet. Sci. Lett. 308, 359–368 (2011).

    Article  Google Scholar 

  9. Warren, J. M. Global variations in abyssal peridotite compositions. Lithos 248, 193–219 (2016).

    Article  Google Scholar 

  10. Salters, V. J. M. & Dick, H. J. B. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418, 68–72 (2002).

    Article  Google Scholar 

  11. Warren, J. M., Shimizum, N., Sakaguchi, C., Dick, H. J. B. & Nakamura, E. An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. J. Geophys. Res. Solid Earth 114, B12203 (2009).

    Article  Google Scholar 

  12. Brunelli, D., Cipriani, A. & Bonatti, E. Thermal effects of pyroxenites on mantle melting below mid-ocean ridges. Nat. Geosci. 11, 520–525 (2018).

    Article  Google Scholar 

  13. Mallick, S., Dick, H. J., Sachi-Kocher, A. & Salters, V. J. Isotope and trace element insights into heterogeneity of subridge mantle. Geochem. Geophys. Geosyst. 15, 2438–2453 (2014).

    Article  Google Scholar 

  14. Snow, J. E., Hart, S. R. & Dick, H. J. B. Nd and Sr isotope evidence linking mid-ocean-ridge basalts and abyssal peridotites. Nature 371, 57–60 (1994).

    Article  Google Scholar 

  15. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

    Article  Google Scholar 

  16. Blackman, D. K. et al. Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid‐Atlantic Ridge 30°N. J. Geophys. Res. 116, B07103 (2011).

    Article  Google Scholar 

  17. Leuthold, J. et al. Partial melting of lower oceanic crust gabbro: constraints from poikilitic clinopyroxene primocrysts. Front. Earth Sci. 6, 15 (2018).

    Article  Google Scholar 

  18. Schleicher, J. M. & Bergantz, G. W. The mechanics and temporal evolution of an open-system magmatic intrusion into a crystal-rich magma. J. Petrol. 58, 1059–1072 (2017).

    Article  Google Scholar 

  19. Lissenberg, C. J. & MacLeod, C. J. A reactive porous flow control on mid-ocean ridge magmatic evolution. J. Petrol. 57, 2195–2220 (2016).

    Article  Google Scholar 

  20. Cherniak, D. J. REE diffusion in feldspar. Chem. Geol. 193, 25–41 (2003).

    Article  Google Scholar 

  21. Van Orman, J. A., Grove, T. L. & Shimizu, N. Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib. Mineral. Petrol. 141, 687–703 (2001).

    Article  Google Scholar 

  22. Lambart, S. No direct contribution of recycled crust in Icelandic basalts. Geochem. Perspect. Lett. 4, 7–12 (2017).

    Article  Google Scholar 

  23. Shorttle, O. Geochemical variability in MORB controlled by concurrent mixing and crystallization. Earth Planet. Sci. Lett. 424, 1–14 (2015).

    Article  Google Scholar 

  24. Hart, S., Blusztajn, J., Dick, H. J. B., Meyer, P. S. & Muehlenbachs, K. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim. Cosmochim. Acta 63, 4059–4080 (1999).

    Article  Google Scholar 

  25. Barth, G. A. & Mutter, J. C. Variability in oceanic crustal thickness and structure: multichannel seismic reflection results from the northern East Pacific Rise. J. Geophys. Res. 101, 17951–17975 (1996).

    Article  Google Scholar 

  26. Wang, T., Lin, J., Tucholke, B. & Chen, Y. J. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis. Geochem. Geophys. Geosyst. 12, Q0AE02 (2011).

    Article  Google Scholar 

  27. Langmuir, C. H., Klein, E. M. & Plank, T. Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Geophys. Monogr. Ser. 71, 183–280 (1992).

    Google Scholar 

  28. Maclennan, J. Concurrent mixing and cooling of melts under Iceland. J. Petrol. 49, 1931–1953 (2008).

    Article  Google Scholar 

  29. Wang, T., Tucholke, B. E. & Lin, J. Spatial and temporal variations in crustal production at the Mid-Atlantic Ridge, 5°N–27°30′N and 0–27 Ma. J. Geophys. Res. Solid Earth 120, 2119–2142 (2015).

    Article  Google Scholar 

  30. Kogiso, T., Hirschmann, M. M. & Reiners, P. W. Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim. Cosmochim. Acta 68, 345–360 (2004).

    Article  Google Scholar 

  31. Liu, B. & Liang, Y. The prevalence of kilometer-scale heterogeneity in the source region of MORB upper mantle. Sci. Adv. 3, e1701872 (2017).

    Article  Google Scholar 

  32. Kelemen, P. B., Shimizu, N. & Salters, V. J. M. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375, 747–753 (1995).

    Article  Google Scholar 

  33. Spiegelman, M., Kelemen, P. B. & Aharonov, E. Causes and consequences of flow organization during melt transport: the reaction infiltration instability in compactible media. J. Geophys. Res. 106, 2061–2077 (2001).

    Article  Google Scholar 

  34. Elliott, T. & Spiegelman, M. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.). 543–581 (Elsevier, 2014).

  35. Lambart, S., Laporte, D., Provost, A. & Schiano, P. Fate of pyroxenite-derived melts in the peridotitic mantle: thermodynamical and experimental constraints. J. Petrol. 53, 451–476 (2012).

    Article  Google Scholar 

  36. Yaxley, G. & Green, D. H. Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt. 78, 243–255 (1998).

    Google Scholar 

  37. Weatherley, S. M. & Katz, R. F. Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle. Geochem. Geophys. Geosyst. 13, Q0AC18 (2012).

    Article  Google Scholar 

  38. Weatherley, S. M. & Katz, R. F. Melt transport rates in heterogeneous mantle beneath mid-ocean ridges. Geochim Cosmochim. Acta 172, 39–54 (2016).

    Article  Google Scholar 

  39. Anderson, D. L. The scales of mantle convection. Tectonophysics 284, 1–17 (1998).

    Article  Google Scholar 

  40. Stixrude, L. & Lithgow-Bertelloni, C. Geophysics of chemical heterogeneity in the mantle. Annu. Rev. Earth Planet. Sci. 40, 569–595 (2012).

    Article  Google Scholar 

  41. Wanless, V. D. & Shaw, A. M. Lower crustal crystallization and melt evolution at mid-ocean ridges. Nat. Geosci. 5, 651–655 (2012).

    Article  Google Scholar 

  42. Delacour, A., Früh-Green, G. L., Frank, M., Gutjahr, M. & Kelley, D. S. Sr- and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): implications for fluid fluxes and lithospheric heterogeneity. Chem. Geol. 254, 19–35 (2008).

    Article  Google Scholar 

  43. Lehnert, K., Su, Y., Langmuir, C., Sarbas, B. & Nohl, U. A global geochemical database structure for rocks. Geochem. Geophys. Geosyst. 1, 1012 (2000).

    Article  Google Scholar 

  44. Charlier, B. L. A. et al. Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chem. Geol. 232, 114–133 (2006).

    Article  Google Scholar 

  45. Koornneef, J. M. et al. TIMS analysis of Sr and Nd isotopes in melt inclusions from Italian potassium-rich lavas using prototype 1013 Ω amplifiers. Chem. Geol. 397, 14–23 (2015).

    Article  Google Scholar 

  46. Millet, M. –A., Doucelance, R., Schiano, P., David, K. & Bosq, C. Mantle plume heterogeneity versus shallow-level interactions: a case study, the São Nicolau Island, Cape Verde archipelago. J. Volcanol. Geotherm. Res. 176, 265–276 (2008).

    Article  Google Scholar 

  47. McGee, L. E., Smith, I. E., Millet, M.-A., Handley, H. K. & Lindsay, J. M. Asthenospheric control of melting processes in a monogenetic basaltic system: a case study of the Auckland Volcanic Field, New Zealand. J. Petrol. 54, 2125–2153 (2013).

    Article  Google Scholar 

  48. McCoy-West, A. J., Millet, M.-A. & Burton, K. W. The neodymium stable isotope composition of the silicate Earth and chondrites. Earth Planet. Sci. Lett. 480, 121–132 (2017).

    Article  Google Scholar 

  49. Koornneef, J. M., Bouman, C., Schwieters, J. B. & Davies, G. R. Use of 1012 ohm current amplifiers in Sr and Nd isotope analyses by TIMS for application to sub-nanogram samples. J. Anal. Spectrom. 28, 749–754 (2013).

    Article  Google Scholar 

  50. Stracke, A., Bizimis, M. & Salters, V. J. M. Recycling oceanic crust: quantitative constraints. Geochem. Geophys. Geosyst. 4, 8003 (2003).

    Google Scholar 

  51. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article  Google Scholar 

  52. Lambart, S., Baker, M. B. & Stolper, E. M. The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. J. Geophys. Res. Solid Earth 121, 5708–5735 (2016).

    Article  Google Scholar 

  53. Smith, P. M. & Asimow, P. D. Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem. Geophys. Geosyst. 6, Q02004 (2005).

    Article  Google Scholar 

  54. Kogiso, T., Hirose, K. & Takahashi, E. Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth Planet. Sci. Lett. 162, 45–61 (1998).

    Article  Google Scholar 

  55. Hirschmann, M. M. & Stolper, E. M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124, 185–208 (1996).

    Article  Google Scholar 

  56. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle derived melts. Science 316, 590–597 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie grant agreement No. 663830) and National Science Foundation (EAR-1834367) to S.L. and by the award NERC NE/R001332/1 to M.-A.M. We thank D. Muir, I. McDonald, T. Oldroyd and M. Jansen for their assistance on the scanning electron microscope, with LA-ICP-MS, with sample preparation and in using the micromill, respectively.

Author information

Authors and Affiliations

Authors

Contributions

C.J.L. designed the study. S.L. and C.J.L. wrote the manuscript with input from M.-A.M., J.M.K. and G.R.D. S.L. and C.J.L. selected the samples. S.L. and M.C. performed the element maps. S.L. performed trace element analyses and geochemical modelling. S.L. and C.J.L. performed micromilling, and S.L., C.J.L., M.-A.M. and J.M.K. performed column chemistry and isotopic analyses.

Corresponding author

Correspondence to Sarah Lambart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6 and Table 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambart, S., Koornneef, J.M., Millet, MA. et al. Highly heterogeneous depleted mantle recorded in the lower oceanic crust. Nat. Geosci. 12, 482–486 (2019). https://doi.org/10.1038/s41561-019-0368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0368-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing