Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A peptide deformylase–ribosome complex reveals mechanism of nascent chain processing


Messenger-RNA-directed protein synthesis is accomplished by the ribosome1,2,3. In eubacteria, this complex process is initiated by a specialized transfer RNA charged with formylmethionine (tRNAfMet)4,5,6. The amino-terminal formylated methionine of all bacterial nascent polypeptides blocks the reactive amino group to prevent unfavourable side-reactions and to enhance the efficiency of translation initiation7,8. The first enzymatic factor that processes nascent chains is peptide deformylase (PDF)5,9,10,11; it removes this formyl group as polypeptides emerge from the ribosomal tunnel12,13 and before the newly synthesized proteins can adopt their native fold, which may bury the N terminus. Next, the N-terminal methionine is excised by methionine aminopeptidase14. Bacterial PDFs are metalloproteases sharing a conserved N-terminal catalytic domain. All Gram-negative bacteria, including Escherichia coli, possess class-1 PDFs characterized by a carboxy-terminal α-helical extension15. Studies focusing on PDF as a target for antibacterial drugs14,16 have not revealed the mechanism of its co-translational mode of action despite indications in early work that it co-purifies with ribosomes17. Here we provide biochemical evidence that E. coli PDF interacts directly with the ribosome via its C-terminal extension. Crystallographic analysis of the complex between the ribosome-interacting helix of PDF and the ribosome at 3.7 Å resolution reveals that the enzyme orients its active site towards the ribosomal tunnel exit for efficient co-translational processing of emerging nascent chains. Furthermore, we have found that the interaction of PDF with the ribosome enhances cell viability. These results provide the structural basis for understanding the coupling between protein synthesis and enzymatic processing of nascent chains, and offer insights into the interplay of PDF with the ribosome-associated chaperone trigger factor.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: PDF specifically binds to the 50S ribosomal subunit via its C-terminal helix.
Figure 2: Interaction of the C-terminal helix of PDF with the ribosome.
Figure 3: Growth analysis comparing the in vivo complementation abilities of PDF and PDFΔCII.
Figure 4: Model for the concerted mechanism of PDF and trigger factor.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors of the 70S–PDF complex have been deposited in the Protein Data Bank under accession codes 2VHM, 2VHN, 2VHO and 2VHP.


  1. Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 108, 557–572 (2002)

    CAS  Article  Google Scholar 

  2. Moore, P. B. & Steitz, T. A. The ribosome revealed. Trends Biochem. Sci. 30, 281–283 (2005)

    CAS  Article  Google Scholar 

  3. Liljas, A. Deepening ribosomal insights. ACS Chem. Biol. 1, 567–569 (2006)

    CAS  Article  Google Scholar 

  4. Marcker, K. & Sanger, F. N-formyl-methionyl-s-RNA. J. Mol. Biol. 8, 835–840 (1964)

    CAS  Article  Google Scholar 

  5. Adams, J. M. & Capecchi, M. R. N-formylmethionyl-sRNA as the initiator of protein synthesis. Proc. Natl Acad. Sci. USA 55, 147–155 (1966)

    ADS  CAS  Article  Google Scholar 

  6. Laursen, B. S., Sorensen, H. P., Mortensen, K. K. & Sperling-Petersen, H. U. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69, 101–123 (2005)

    CAS  Article  Google Scholar 

  7. Eisenstadt, J. & Lengyel, P. Formylmethionyl-tRNA dependence of amino acid incorporation in extracts of trimethoprim-treated Escherichia coli. Science 154, 524–527 (1966)

    ADS  CAS  PubMed  Google Scholar 

  8. Harvey, R. J. Growth and initiation of protein synthesis in Escherichia coli in the presence of trimethoprim. J. Bacteriol. 114, 309–322 (1973)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fry, K. T. & Lamborg, M. R. Amidohydrolase activity of Escherichia coli extracts with formylated amino acids and dipeptides as substrates. J. Mol. Biol. 28, 423–433 (1967)

    CAS  Article  Google Scholar 

  10. Adams, J. M. On the release of the formyl group from nascent protein. J. Mol. Biol. 33, 571–589 (1968)

    CAS  Article  Google Scholar 

  11. Pine, M. J. Kinetics of maturation of the amino termini of the cell proteins of Escherichia coli. Biochim. Biophys. Acta 174, 359–372 (1969)

    CAS  Article  Google Scholar 

  12. Housman, D., Gillespie, D. & Lodish, H. F. Removal of formyl-methionine residue from nascent bacteriophage f2 protein. J. Mol. Biol. 65, 163–166 (1972)

    CAS  Article  Google Scholar 

  13. Ball, L. A. & Kaesberg, P. Cleavage of the N-terminal formylmethionine residue from a bacteriophage coat protein in vitro. J. Mol. Biol. 79, 531–537 (1973)

    CAS  Article  Google Scholar 

  14. Giglione, C., Boularot, A. & Meinnel, T. Protein N-terminal methionine excision. Cell. Mol. Life Sci. 61, 1455–1474 (2004)

    CAS  Article  Google Scholar 

  15. Guilloteau, J. P. et al. The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: a platform for the structure-based design of antibacterial agents. J. Mol. Biol. 320, 951–962 (2002)

    CAS  Article  Google Scholar 

  16. Giglione, C., Pierre, M. & Meinnel, T. Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol. Microbiol. 36, 1197–1205 (2000)

    CAS  Article  Google Scholar 

  17. Takeda, M. & Webster, R. E. Protein chain initiation and deformylation in B. subtilis homogenates. Proc. Natl Acad. Sci. USA 60, 1487–1494 (1968)

    ADS  CAS  Article  Google Scholar 

  18. Meinnel, T. et al. The C-terminal domain of peptide deformylase is disordered and dispensable for activity. FEBS Lett. 385, 91–95 (1996)

    CAS  Article  Google Scholar 

  19. Schuwirth, B. S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005)

    ADS  CAS  Article  Google Scholar 

  20. Becker, A. et al. Iron center, substrate recognition and mechanism of peptide deformylase. Nature Struct. Biol. 5, 1053–1058 (1998)

    CAS  Article  Google Scholar 

  21. Hardesty, B. & Kramer, G. Folding of a nascent peptide on the ribosome. Prog. Nucleic Acid Res. Mol. Biol. 66, 41–66 (2001)

    CAS  Article  Google Scholar 

  22. Ferbitz, L. et al. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590–596 (2004)

    ADS  CAS  Article  Google Scholar 

  23. Agashe, V. R. et al. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117, 199–209 (2004)

    CAS  Article  Google Scholar 

  24. Kaiser, C. M. et al. Real-time observation of trigger factor function on translating ribosomes. Nature 444, 455–460 (2006)

    ADS  CAS  Article  Google Scholar 

  25. Raue, U., Oellerer, S. & Rospert, S. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J. Biol. Chem. 282, 7809–7816 (2007)

    CAS  Article  Google Scholar 

  26. Vetro, J. A. & Chang, Y. H. Yeast methionine aminopeptidase type 1 is ribosome-associated and requires its N-terminal zinc finger domain for normal function in vivo. J. Cell. Biochem. 85, 678–688 (2002)

    CAS  Article  Google Scholar 

  27. Addlagatta, A. et al. Identification of an SH3-binding motif in a new class of methionine aminopeptidases from Mycobacterium tuberculosis suggests a mode of interaction with the ribosome. Biochemistry 44, 7166–7174 (2005)

    CAS  Article  Google Scholar 

  28. Ragusa, S., Blanquet, S. & Meinnel, T. Control of peptide deformylase activity by metal cations. J. Mol. Biol. 280, 515–523 (1998)

    CAS  Article  Google Scholar 

  29. Wegrzyn, R. D. & Deuerling, E. Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding. Cell. Mol. Life Sci. 62, 2727–2738 (2005)

    CAS  Article  Google Scholar 

  30. Cull, M. G. & Schatz, P. J. Biotinylation of proteins in vivo and in vitro using small peptide tags. Methods Enzymol. 326, 430–440 (2000)

    CAS  Article  Google Scholar 

  31. Vila-Sanjurjo, A., Schuwirth, B. S., Hau, C. W. & Cate, J. H. Structural basis for the control of translation initiation during stress. Nature Struct. Mol. Biol. 11, 1054–1059 (2004)

    CAS  Article  Google Scholar 

  32. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993)

    CAS  Article  Google Scholar 

  33. Adams, P. D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat. 11, 53–55 (2004)

    CAS  Article  Google Scholar 

  34. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  35. Haldimann, A. & Wanner, B. L. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J. Bacteriol. 183, 6384–6393 (2001)

    CAS  Article  Google Scholar 

  36. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000)

    ADS  CAS  Article  Google Scholar 

  37. Harlow, E. & Lane, D. P. Antibodies: A Laboratory Manual 313–315 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1988)

    Google Scholar 

Download references


Crystallographic data were collected at the beamline X06SA at the Swiss Light Source (SLS). We are grateful to C. Schulze-Briese, S. Gutmann, E. Pohl, S. Russo and T. Tomizaki for their outstanding support at the SLS. We thank B. Mikolasek for ribosome preparation, F. Parmeggiani and A. Plückthun at the University of Zurich for assistance with the surface plasmon resonance measurements and access to the Biacore 3000 instrument, R. Brunisholz at the Functional Genomics Center Zurich for mass-spectrometric analysis, D. Böhringer, J. Erzberger, S. Jenni and M. Müller for critically reading the manuscript and all members of the Ban laboratory for suggestions and discussions. This work was supported by the Swiss National Science Foundation (SNSF) and the National Center of Excellence in Research (NCCR) Structural Biology programme of the SNSF.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nenad Ban.

Supplementary information

Supplementary Information

The file contains Supplementary Results, Supplementary Figures 1-6 with Legends, Supplementary Tables 1-2 and additional references. (PDF 3323 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bingel-Erlenmeyer, R., Kohler, R., Kramer, G. et al. A peptide deformylase–ribosome complex reveals mechanism of nascent chain processing. Nature 452, 108–111 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing